
LONG TIME VALIDITY OF THE LINEARIZED BOLTZMANN EQUATION
FOR HARD SPHERES: A PROOF WITHOUT BILLIARD THEORY

CORENTIN LE BIHAN

Abstract. We study space-time fluctuations of a hard sphere system at thermal equilibrium,
and prove that the covariance converges to the solution of a linearized Boltzmann equation in
the low density limit, globally in time. This result has been obtained previously in [7], by using
uniform bounds on the number of recollisions of dispersing systems of hard spheres (as provided
for instance in [9]). We present a self-contained proof with substantial differences, which does not
use this geometric result. This can be regarded as the first step of a program aiming to derive
the fluctuation theory of the rarefied gas, for interaction potentials different from hard spheres.
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1. Introduction

Consider a system of N classical particles in a box Λ ⊂ Rd (d ≥ 3), interacting by means of a
two-body potential Vε(·) := V(·/ε). We are interested in the behavior of the system as the number
of particles goes to infinity and the interaction length scale ε is fixed by the Boltzmann-Grad scaling
Nεd−1 = 1. It is a limit of low density where the mean free path of a particle between two collisions
is of order O(1).

Away from equilibrium, it is expected that the system is governed by the Boltzmann equation
in the low density limit. However most of the existing rigorous results are valid for short time,
such that only a small fraction of the particles actually interact. The first convergence proofs were
provided in the fundamental work of Lanford [18] for hard spheres and by King [17] for different
finite range potentials (see also [11, 26]). Quantitative convergence bounds have been obtained later
on (see [14, 20]).

Illner and Pulvirenti proved a first long time convergence result in [15] (see also [12]), but only
for a very diluted gas in the whole space, where dispersion is the dominant phenomena. Other
long time results have been obtained later on for a system of one labeled particle evolving in a
background at equilibrium (see [27] for arbitrary kinetic times and [3] for diffusive times). The law
of the tagged particle follows then the linear Boltzmann equation. See also [2, 10] for adaptations
of the proof to interaction potentials different from hard core.

Looking at a tagged particle in a background at equilibrium can be seen as a perturbation of
order O(1) of the equilibrium measure. The next natural step is to study small fluctuations around
equilibrium which can be seen as perturbations of order O(N) (we are interested in the square of
the small fluctuations). Note that a reasonable "final step" would be to understand on long time
non equilibrium chaotic measures which are O(CN ) perturbations.

In the low density limit, the fluctuations behave like a Gaussian field with covariance governed by
the linearized Boltzmann equation, as predicted in [24, 25]. The rigorous proof is separated in two
main parts: first the convergence of the covariance and second checking asymptotically the Wick’s
rules characterizing the higher order moments; treated first for short times, respectively in [24], and
[5, 6] in the more general context of non equilibrium states. Concerning the global in time result,
the Wick’s rule has been treated recently in the case of hard spheres in [8]. Convergence of the
covariance has been obtained first for hard disks in dimension 2 in the canonical ensemble (see [4]),
using that the partition function is uniformly bounded (in ε), which is a specificity of dimension 2.
Later on a proof has been given for dimension 3 in [7], in the grand canonical ensemble.

The purpose of the present work is to propose a different method of proof for the result in [7].
As known, a crucial part of the argument leading to the Boltzmann equation amounts to showing
that dynamical memory effects (called recollisions) are vanishing in the limit. The long time result
is based then on a sampling checking the trajectories carefully and eliminating the recollisions on
very small time scales (of order δ, a power of ε). On these scales, it is used in [7] that the dynamics
is decomposed on independent clusters of finite size, each of which behaves as a dispersing billiard
with uniformly bounded number of collisions. The latter property is unproved (possibly false) for
arbitrary potentials with compact support (defining, say, a collision as a two-by-two interaction at
distance ε). Even in the case of hard spheres, the property is delicate: explicit bounds have been
provided in [9] by means of refined geometric techniques.

This motivates us to develop a different argument circumventing any uniform control on rec-
ollision numbers. The main ingredients are a subtle conditioning of the initial data forbidding
explosions of the number of recollisions, together with a suitable dynamical cumulant decomposi-
tion method, inspired by [6].



LONG TIME VALIDITY OF THE LINEARIZED BOLTZMANN EQUATION 3

1.1. Definition of the system. Let Λ := Rd/Zd (with d ≥ 3) be the domain. We denote D =
Λ× Rd its tangent bundle and Dnε ⊂ Dn the n-particle canonical phase space:

(1.1) Dnε :=
{
Zn := (x1, v1, · · · , xn, vn) ∈ Dn, for 1 ≤ i < j ≤ n, |xi − xj | > ε

}
.

Here and in the following, we use the notation

Xn = (x1, · · · , xn), Vn = (v1, · · · , vn), and zi = (xi, vi).

On each Dnε we construct the hard sphere dynamics as the Hamiltonian dynamics associated
with the Hamiltonian

(1.2) Hεn(Zn) :=
1

2
‖Vn‖2 + Vεn(Xn), Vεn(Xn) :=

∑
1≤i<j≤n

V
(
‖xi − xj‖

ε

)
where V is the hard core interaction potential

(1.3) V(r) :=

{
0 if |r| > 1
∞ else .

In this dynamics particles move along straight lines until they meet each other. If at time τ we
have |xq(τ)− xq′(τ)| = ε, the outgoing velocities are given by the following scattering law:

(1.4)


vq(τ

+) = vq(τ
−)− xq′(τ)− xq(τ)

|xq′(τ)− xq(τ)|
·
(
vq(τ

−)− vq′(τ−)
) xq′(τ)− xq(τ)

|xq′(τ)− xq(τ)|

vq′(τ
+) = vq′(τ

−) +
xq′(τ)− xq(τ)

|xq′(τ)− xq(τ)|
·
(
vq(τ

−)− vq′(τ−)
) xq′(τ)− xq(τ)

|xq′(τ)− xq(τ)|
.

This process is well defined for all times, almost everywhere in Dnε with respect to the Lebesgue
measure (see [1]).

We denote in the following Dε :=
⊔
n≥0Dnε the grand canonical phase space and N the random

number of particles.We can then extend the Hamiltonian dynamics to Dε and denote ZN (t) the
realization (defined almost surely) of the hard sphere flow on Dε with random initial data ZN (0):
for N = n, ZN (t) follows the Hamiltonian dynamics on Dnε .

The initial data is sampled according to the stationary measure introduced next. The grand
canonical Gibbs measure Pε (and its expectation Eε) are defined on Dε as follows. An application
G : Dε → R is a test function if there exists a sequence (gn)n≥0 with gn ∈ L∞(Dn) and

for N = n, G(ZN ) := gn(ZN ).

Then we define Eε as

(1.5) Eε[G(ZN )] :=
1

Zε

∑
n≥0

µnε
n!

∫
Dn
gn(Zn)

e−H
ε
n(Zn)

(2π)nd/2
dZn,

where Zε is a normalisation constant and µε is tuned to respect the Boltzmann-Grad scaling
µεε

d−1 = 1.
The empirical distribution at time t is defined as the average configuration of particles at time

t: for g some test function on D,

(1.6) πεt (g) :=
1

µε

N∑
i=1

g(zi(t)).

At equilibrium, we have the following law of large numbers. Denote

(1.7) M(v) := (2π)−d/2e−‖v‖
2/2.



4 LONG TIME VALIDITY OF THE LINEARIZED BOLTZMANN EQUATION

Theorem 1.1. For any continuous and bounded test function g : Λ × Rd → R, for all t ∈ R and
for any a > 0,

(1.8) lim
ε→0

Pε
[∣∣∣∣πtε(g)−

∫
g(z)M(v)dz

∣∣∣∣ ≥ a] = 0.

Remark 1.1. The previous result is a simple corollary of the Lanford’s theorem and of the invari-
ance of the measure (see [18]).

1.2. Convergence to the linearized Boltzmann equation. The aim of this article is to inves-
tigate the next order, namely the fluctuation field

(1.9) ζtε(g) := µ1/2
ε

(
1

µε

∑
1≤i≤N

g(zi(t))− Eε[πε0(g)]

)
.

When ε tends to 0, collisions become rare and we expect that particles can see each other only a
finite number of times in any bounded time interval. We define the linearized Boltzmann operator
as

(1.10) Lg(v) :=

∫
Sd−1×Rd

(
g(v′) + g(v′∗)− g(v)− g(v∗)

)
((v − v∗) · η)+M(v∗)dη dv∗,

where (v′, v′∗) are given by the scattering of (v, v∗, η)

(1.11)
{

v′ := v − η · (v − v∗)η
v′∗ := v∗ + η · (v − v∗)η.

This operator describes the variation of mass due to changes of velocity of colliding particles. The
operator L is a self-adjoint negative operator on L2(M(v)dz). We want to prove the following result

Theorem 1.2. Let f, g ∈ L2(M(v)dz) be two test functions. Then we have the following conver-
gence result: for all t ≥ 0,

Eε
[
ζtε(h)ζ0

ε (g)
]
−→
ε→0

〈
h, et(−v·∇x+L)g

〉
where <,> is the Hermitian product on L2(M(v)dz).

Since the two bilinear operators

(h, g) 7→ Eε
[
ζtε(h)ζ0

ε (g)
]
, (h, g) 7→

〈
h, et(−v·∇x+L)g

〉
are both continuous on L2(M(v)dz) (see [7]), it sufficient to prove Theorem 1.2 in a dense subset.
This also allows to have a quantitative version of the theorem, which we state for completeness.

We define for g smooth the norm

(1.12) ‖g‖ := sup
(x,v)∈D

∣∣M−1(v)g(x, v)
∣∣

and we consider test functions g such that

(1.13) ‖g‖+ ‖ |∇xg| ‖ <∞.
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Theorem 1.3. Let g and h two C1(D) functions satisfying condition (1.13). Then there exist three
constants C > 1, C ′ > 1 and α ∈ (0, 1) independent of g, h such that for any ε small enough, T > 1,
θ < 1

C′T 2

sup
t∈[0,T ]

∣∣∣∣Eε[ζtε(h)ζ0
ε (g)

]
−
〈
h, et(−v·∇x+L)g

〉∣∣∣∣
≤ C

(
CT 3/2θ1/2 + (CT )2T/θεα

)
‖h‖
(
‖g‖+ ‖∇g‖

)
.

(1.14)

In particular we can choose T = o((log | log ε|)1/3) and θ = 1
β log | log ε| , β ∈ (0, 1) small enough.

Notations. From now on we will use the following notations.
We denote for m < n two integers, [m,n] := {m,m+ 1, · · · , n} and [n] := [1, n].
For Zn ∈ Dn, and ω ⊂ [n], we denote

Zω := (zω(1), · · · , zω(|ω|))

where ω(i) is the i-th element of ω counted in increasing order. For 1 ≤ l < m ≤ n, Zl,m := Z[l,m].
Given a family of particles indices {i1, · · · , in}, the notation (i1, · · · , in) indicates the ordered

sequence in which ∀k 6= l, ik 6= il. In addition
• in := (i1, · · · , in),
• for m ≤ n, im = (i1, · · · , im), and more generally for ω ⊂ [1, n], iω := (iminω, · · · , imaxω),
• for 0 ≤ m < n and (i1, · · · , im),

∑
(im+1,··· ,in)

denotes the sum over every family such that for

k < l ≤ n, ik 6= il,
• Zin := (zi1 , · · · , zin), as ordered sequence.

We also precise the sense of Landau notation: A = B+O(D) means that there exists a constant
C depending only on the dimension such that |A−B| < C D.

Finally let hn be a function on Dn. We denote

Eε
[
hn
]

:= Eε

[
1

µnε

∑
(i1,··· ,in)

hn
(
Zi
)]

and the associated truncated function defined on Dε

ĥn(ZN ) :=
1

µnε

∑
(i1,··· ,in)

hn
(
Zin
)
− Eε

[
hn
]
.

1.3. Strategy of the proof. We explain now the main ideas of the proof and of the improvement
with respect to [7].

Because ζtε(g) is a centered random variable,

(1.15) Eε
[
ζtε(h)ζ0

ε (g)
]

= Eε

[
µ−1/2
ε

N∑
i=1

h(zi(t)) ζ
0
ε (g)

]
.

The first step is to find a family of functionals Φtε,n : L∞(D) → L∞(Dn) corresponding to the
pullback of the test function h at time 0

(1.16) Eε

[
µ−1/2
ε

N∑
i=1

h(zi(t)) ζ
0
ε (g)

]
=
∑
n≥1

Eε

µ−1/2
ε

∑
(i1,··· ,in)

Φtε,n[h]
(
Zin(0)

)
ζ0
ε (g)

 .
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It turns out that the Φtε,n[h] are a sum over histories. Loosely speaking, a history is defined as a
way to remove (or not) particles at each collision, so that at time t there remains only one particle
(see the picture below). Then

(1.17) Φtε,n[h](Zn) :=
1

n!

∑
history

h(zk(t))1historyσhistory

where σhistory = ±1 and zk(t) is the position of the last particle k (k depends of the history). This
formula will be explained precisely in section 2. For the moment, we mention that the signs σhistory
are related to a splitting of collision operators into a positive and negative part (as in (1.10)).

t

0

Figure 1. Example of history for four particles.

The classical method to prove convergence of a hard sphere system to the Boltzmann equation
(and here to the linearized equation) amounts to show that each term of the sum (1.16) converges
to its formal limit. This is the way we compare the hard sphere process with the limit punctual
process. In this procedure, it is natural to separate a principal part containing a controlled number
of collisions, from some rest terms encoding ill-behaved trajectories (for instance trajectories with
more than n− 1 collisions, which do not have a counterpart in the limit process).

For the argument to be rigorous, we then need a bound on the rest terms of the sum. In
usual derivations of the Boltzmann equation (see for instance [18, 17, 14, 3, 20]) one resorts to
L∞ bounds and to a dual representation of the sum (1.16). In contrast here we rely on the above
pullback formula, together with suitable stopping times ts truncating the formula when the number
of histories becomes uncontrolled. To implement this idea it is convenient to consider L2 bounds
as in [4, 7]. Indeed (using notation introduced at the end of the previous section), because ζ0

ε (g) is
centered ∣∣∣∣∣∣Eε

∑
in

Φt−tsε,n [h](Zin(ts))ζ
0
ε (g)

∣∣∣∣∣∣ ≤ Eε
[(
µnε Φ̂t−tsε,n [h](Zin(ts))

)2
] 1

2

Eε
[
ζ0
ε (g)2

] 1
2

≡ Eε
[(
µnε Φ̂t−tsε,n [h](Zin(0))

)2
] 1

2

Eε
[
ζ0
ε (g)2

] 1
2
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using Cauchy-Schwartz and the invariance of the Gibbs measure. By virtue of such estimates, we
do not need to take into account what happens for pathological histories before ts.

Unfortunately, in the bound for Φtε,n[h], we do not know how to take into account the cancellations
due to the signs in σhistory. Thus we have to count the number of possible histories and collisions.
We then need to distinguish two kinds of collisions: those where one particle is removed, and those
where both particles are kept, called recollisions. The second type is harder to control.

We need two different samplings to control each type of collision separately. The sampling
method (already used in [7]) is an adaptation of [3, 4] (and reminiscent of [13] in the context of the
quantum Lorentz gas).

The first sampling has a relative large step θ = 1/β log | log ε| (with β ∈ (0, 1) set later) and
enables to control a moderate growth of collisions with removal. This will be the source of the slow
speed of convergence in (1.14).

The second sampling, which has a shorter step δ = εβ
′
(with β′ ∈ (0, 1) set later) is used to

control possibly many recollisions on the short time scale. These collisions will be allowed only on
the last time interval [ts, ts + δ].

In the present paper, two conditionings on initial data are used, to deal with the recollision
problem. The first one is symmetric on all the particles and forbids a group of more than a fixed
integer γ > 0 to interact altogether on each small time interval [kδ, (k + 1)δ] (for k ∈ N). Once
applied this conditioning on the invariant measure, the paper [7] uses the billiard theory developed
in [9] to control the number of histories in clusters of γ particles. Notice that such result has no
known analogue for different interaction potentials, even with compact support.

The main goal of this paper is to avoid the latter geometrical argument, as explained next.
Let us define the collision graph of a trajectory on a time interval [τ, τ ′] as the graph where

the vertices are the set of particles and to each collision happening on [τ, τ ′] corresponds an edge
between the colliding particles. A trajectory on the time interval [ts, t] is said non-pathological (see
the figure) if

• its collision graph restricted to [ts+δ, t] is a tree (at each collision, one particle is removed),
• on [ts, ts + δ] the collision graph has no cycle (but there can be recollisions).

Due to the symmetric conditioning, one particle can meet at most γ other particles on [ts, ts + δ],
and thus there are less than γ recollisions per particle. Therefore the number of non-pathological
trajectories and corresponding recollisions is controlled by construction.

We then introduce a second conditioning forbidding pathological trajectories. One difficulty is
that this conditioning will introduce asymmetry. Since there are approximately µε particles in the
system, choosing one particle costs roughly µε and in a symmetric conditioning the choice of k
particles would cost µkε . But the sum

∑
in

Φε,n[h](Zin) is already a sum over n chosen particles,
and for each term of this sum we are interested in particles of the “background” which can influence
the n selected particles. Hence, it is sufficient to impose an asymmetric conditioning where in the
set of k particles producing a pathology, the first one is chosen first in in, and then the k− 1 other
particles are chosen in the whole set of particles. Such procedure will provide a gain of µ−1

ε which
turns out to be enough to control the error term, by means of a cumulant expansion.

We conclude by describing better the asymmetric conditioning, which is the main novel tool of
this paper. Let χ(Zr) be the indicator function which takes value 1 if there exist history parameters
such that the graph on [ts, ts + δ] with initial data Zr at time ts has a cycle and is connected.
Because the indicator function involves a bounded number of particles, its weight ‖χ(Zr)‖L1 is
small. We then introduce an asymmetric conditioning Xin(ZN (ts)) imposing the existence of a set
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t

tstop + δ

tstop

Figure 2. An example of one non-pathological trajectory (on the left) and a
pathological one (on the right).

of particles ω containing at least one particle of {i1, · · · , in} such that χ(Zω(ts) is equal to 1, id est
one trajectory containing a particle of in is pathological.

Let us give an idea of how to bound Xin(ZN (ts)). We develop the constraint over finite numbers
of background variables

Xin(ZN (ts)) =
∑
p≥n

∑
(in+1,··· ,ip)

Xn,p
(
Zip(ts)

)
.

The Xn,p
(
Zip(ts)

)
can be expressed as sums over families of particles (ω1, · · · , ωk), where ωi is a

subset of ip, of terms
(−χ(Zω1(ts)))(−χ(Zω2(ts))) · · · (−χ(Zωk(ts))).

The ωi can intersect, hence the number of terms in Xn,p is huge. But the (first) symmetric condi-
tioning permits to bound the number of intersecting sets. If ω1, · · · , ωk intersect, all the particles
in their union are close. Hence the size of ω1 ∪ · · · ∪ ωk is bounded by γ and k is smaller than 2γ .
This is sufficient to bound Xn,p.

The paper is organized as follows. In section 2 we give a proper definition of history and we use it
to construct the functionals Φtε,n. Then the two samplings mentioned above are implemented, and
the conditionings applied. This allows to decompose Eε

[
ζtε(h)ζ0

ε (g)
]
into a main term, plus error

terms of different nature: a development on trajectories (actually called below pseudotrajectories)
(i) without recollisions (bounded in Section 4), (ii) with non-pathological recollisions (bounded in
section 5) and (iii) with pathological recollisions (bounded in Section 6). The estimation of the
error terms requires standard L2(Pε) estimates based on static cumulant decomposition, which are
reported in Section 3. Finally, the convergence of the main term is proved in Section 7.

2. Development along pseudotrajectories and time sampling

2.1. Definition of (forward) pseudotrajectories. Consider n particles. To lighten notation for
pseudotrajectories (called “histories” in the introduction), we will drop their dependence on ε.
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For m ≤ n, fix a family of pseudotrajectory parameters

((si, s̄i)1≤i≤n−m, (κj)1≤j≤n) ∈ {(±1,±1)}n−m × Nn,

and an initial data Zn ∈ Dnε .
We construct iteratively the pseudotrajectories Zn(τ, ((si, s̄i)1≤i≤n−m, (κj)1≤j≤n), Zn), the col-

lision indices ι(τ) and recollision indices (κj(τ))1≤j≤n. At time τ = 0, we set ι(0) := 1 and for all
j, κj(0) := κj . Moreover at τ = 0, Zn(0) = Zn ∈ Dnε . The number of particles decreases with time
and is equal to (n+ 1− ι(τ)).

If ι(τ) < n−m+ 1, the remaining particles move freely along straight lines, until there is a new
collision between two of them at time τ , say q and q′ with q < q′. If sι(τ−) = 1 (respectively −1),
we look at κq(τ−) (respectively κq′(τ−)):

• if it is strictly positive, we have a recollision. The two particles scatter as in (1.4) and
κq(τ

+) = κq(τ
−)− 1 (respectively κq′(τ+) = κq′(τ

−)− 1),
• if it is 0 we have an annihilation: we remove the particle q (in the case where sι(τ−) = −1,

we remove q′). The other particle q′ (respectively q) scatters if s̄ι(τ−) = 1 or continues
freely along straight line else.

Finally we increment ι(τ).
When ι(τ) = n −m + 1 (there are m particles left), all the annihilations have been performed

and the remaining particles evolve according to the Hamiltonian flow.

1 2 3 4 5

Figure 3. Pseudotrajectory associated with (((1,−1), (1, 1), (−1, 1)), (0, 0, 1, 0, 0)).

Let ω be a finite subset of N∗. We will denote Zω(t, Zω, ((si, s̄i)i≤|ω|−m, (κj)j∈ω)) the pseudo-
trajectory with particles of ω and Zω(t) when there is no ambiguity on the parameters. Note that
this should not be confused with Zω(t), the configuration of the particles ω in the realization of the
hard sphere flow over Dε (the “real trajectories”).

Definition 2.1 (Collision graph). Given Zr ∈ Drε and parameters ((si, s̄i), (κj)j), we construct the
collision graph G[0,t]

r as the couple (E, V ), with V := {1, · · · , r} and

E ⊂ {(i, j)τ , where (i, j) ∈ V 2, i < j, τ ∈ [0, t]}

such that (i, j)τ ∈ E if and only if there is a collision at time τ in the pseudotrajectory between
particle i and j. It is an unoriented graph where the edges are labeled by the collision times.
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By well known properties of the hard sphere dynamics (see [1]), for almost all Zr, G[0,t]
r has a

finite number of edges. We can order τ1 < τ2 < · · · < τk the collision times of G[0,t]
r .

In the following we possibly denote E
(
G[0,t]
r

)
:= E.

3

1

2 4

5

t3

t5 t4

t1

t2

Figure 4. Collision graph associated with the pseudotrajectory of Figure 3, with
t1 < t2 < t3 < t4 < t5 the collision times.

2.2. Development along pseudotrajectories. The pseudotrajectories are used to pull back a
function evaluated at time t, up to a previous time 0.

Let m ≤ n be two integers, and ((si, s̄i)1≤i≤n−m), (κj)1≤j≤n) be collision parameters and t > 0
the finite time. In order not to count twice the same pseudotrajectory, all parameters have to be
taken into account. We define Rm←n,t((si,s̄i),(κj))

⊂ Dnε as the set of initial parameters Zn such that at
time t, the following condition is verified: {1, · · · ,m} are the remaining particles of Zn(t, Zn), and
the recollision indices defined in the previous section vanish: for all j, κj(t) = 0.

Let hm ∈ L∞(Dm) be a test function (not necessarily symmetric under permutation of variables).
We define the pseudotrajectory development as the functional Φtm←n : L∞(Dm)→ L∞(Dn) with

(2.1) Φtm←n[hm](Zn) :=
1

(n−m)!

∑
(si,s̄i)i≤n−m

(κj)j

(
n−m∏
i=1

s̄i

)
1Rm←n,t

((si,s̄i),(κj))
hm(Zn(t, Zn)).

We have the following semigroup property:

Proposition 2.1. Consider m ≤ n two integers, t > t′ > 0 two evaluation times and im a family
of particles. Then for any function hm ∈ L∞(Dm) and almost all initial data Zn ∈ Dnε ,

(2.2)
∑

(im+1,···in)

Φtm←n[hm](Zn) =

n∑
n′=m

∑
(im+1,··· ,in)

Φt
′

n′←n

[
Φt−t

′

m←n′ [hm]
]

(Zn).

Proof. Fix collision parameters ((si, s̄i)i≤n−m, (κj)j≤n) and an initial data. In the pseudotrajectory
Zn(τ, ((si, s̄i), (κj)), Zn), let ω be the set of remaining particles at time t′ and tl the time of the last
annihilation before t′. We construct two sets of collision parameters

((s′i, s̄
′
i)i≤n−|ω|, (κ

′
j)j≤n) := ((si, s̄i)i≤n−|ω|, (κj − κj(tl))j≤n),

((s′′i , s̄
′′
i )i≤|ω|−m, (κ

′′
j )j∈ω) := ((si, s̄i)i>|ω|−m, (κj − κj(t′))j∈ω).

We first prove the equality

Zn (t, ((si, s̄i)n−m, (κj))n, Zn)

= Zω
(
t− t′, ((s′′i , s̄′′i )|ω|−m, (κ

′′
j )ω),Zn

(
t′, ((s′i, s̄

′
i)n−|ω|, (κ

′
j)n), Zn

))
,

with obvious simplification of notation. Until time tl we have

Zn(τ, ((si, s̄i)n, (κj)n), Zn) = Zn(τ, ((s′i, s̄
′
i)n−|ω|, (κ

′
j)n), Zn).
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On the time interval [tl, t
′], there are only recollisions (no annihilation) in the two pseudotrajectories.

On the left hand side, are treated by the decreasing parameters κj(τ) which decrease. On the right
hand side, since we have treated all the annihilations, particles evolve along the Hamiltonian flow.
Note that after time tl, the κ′j(τ) vanish. Hence at time t′

Zn(t′, ((si, s̄i), (κj)), Zn) = Zn(t′, ((s′i, s̄
′
i), (κ

′
j)), Zn)

and denoting ι(τ) the collision indices associated with the first pseudotrajectory,

ι(t′) = n− |ω|, ∀j, κ′j = κj − κj(t′).

Pursuing this construction we obtain that

Zn(t, ((si, s̄i), (κj)), Zn) = Zω(t− t′, ((s′′i , s̄′′i ), (κ′′j )),Zn(t′, ((s′i, s̄
′
i), (κ

′
j)), Zn))

which will be shortened as

Zn(t, Zn) = Zω(t− t′,Zn(t′, Zn)).

For each initial data, we have constructed an onto map

((si, s̄i)n, (κj)n) 7→ (ω, ((s′i, s̄
′
i)n−|ω|, (κ

′
j)n), ((s′′i , s̄

′′
i )|ω|−m, (κ

′′
j )|ω|)

with in addition

n−m∏
i=1

s̄i =

n−|ω|∏
i=1

s̄′i

|ω|−m∏
i=1

s̄′′i .

Hence denoting Rω←n,t((s′i,s̄
′
i),(κ

′
j))

the set of initial data such that the set of remaining particles of
Zn(t′, ((s′i, s̄

′
i), (κ

′
j)), Zn) is ω, and the corresponding recollision parameters κ′i(t′) vanish, we have

∑
(si,s̄i)i≤n−m

(κj)j

n−m∏
i=1

s̄i 1Rm←n,t
((si,s̄i),(κj))

hm(Zn(t)) =
∑

[m]⊂ω⊂[n]

∑
(s′i,s̄

′
i)i≤n−|ω|

(κ′j)j≤n

n−|ω|∏
i=1

s̄′i 1Rω←n,t
((s′
i
,s̄′
i
),(κ′

j
))

×
∑

(s′′i ,s̄
′′
i )i≤|ω|−m
(κ′′j )ω

|ω|−m∏
i=1

s̄′′i 1Rm←ω,t
((s′′
i
,s̄′′
i

),(κ′′
j

))

(
Zn(t′)

)
hm
(
Zω
(
(t− t′,Zn(t′))

))
.

This proves that for Zn ∈ Dnε ,

(n−m)!Φtm←n[hm](Zn)

=

n∑
n′=m

∑
ω⊂[m+1,m+n]
|ω|=n′−m

(n− n′)!Φt
′

n′←n

[
(n′ −m)!Φt−t

′

m←n′ [hm]
]

(Zm, Zω, Zωc).
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Then summing on all families of particles∑
(im+1,···in)

Φtm←n[hm](Zin(0))

=
∑

(im+1,···in)

n∑
n′=m

1(
n−m
n′−m

) ∑
ω⊂[m+1,m+n]
|ω|=n′−m

Φt
′

n′←n

[
Φt−t

′

n←n′ [hm]
] (

(Zim ,Ziω ,Ziωc )(0)
)

=
∑

(im+1,··· ,in)

n∑
n′=m

Φt
′

n′←n

[
Φt−t

′

n←n′ [hm]
]

(Zin(0)).

�

We can now write the pullback of a test function in terms of pseudotrajectory developments.
This is the main result of this section:

Theorem 2.2. Let (i1, · · · , im) be a family of particles, with imax := max{i1, · · · , im}. For almost
all ZN ∈ Dε ∪ {N ≥ imax} we have

(2.3) hm
(
Z(i1,··· ,im)(t)

)
=
∑
n≥m

∑
(im+1,··· ,in)

Φtm←n[hm](Zin(0)).

In addition if we do not fix (i1, · · · , im) we have

(2.4)
∑
im

hm
(
Zim(t)

)
=
∑
n≥m

∑
in

Φtm←n[hm](Zin(0)).

Proof. The proof is an adaptation of [21].
We rewrite the semigroup property of the previous proposition for a specific realization of the

hard sphere process: for t > t′ > 0,∑
(im+1,···in)

Φtm←n[hm](Zin(0)) =

n∑
n′=m

∑
(im+1,··· ,in′ )

∑
(in′+1,··· ,in)

Φt
′

n′←n

[
Φt−t

′

n←n′ [hm]
]

(Zin(0)).

Thanks to Alexander’s proof of wellposedness of the hard sphere dynamics [1], outside a set of
zero measure the number of collisions is finite on any finite interval. Hence [0, t] can be cut into
small time intervals [tk, tk+1] such that on each time interval there is at most one collision between
two particles i and j, and if i (or j) is removed there is no collision at all. Using the semigroup
property, one needs to prove the result only on each [tk, tk+1].

We fix the number of particles N and the initial configuration ZN and we consider a small time
t such that the preceding conditions are valid in [0, t]. We distinguish three cases.

First, suppose that on [0, t] none of the particles in im collide. Then for any n > m all the
1Rm←n,t

((si,s̄i)i,(κj)j)
(Zin) vanish and

hm
(
Zim(t)

)
= Φtm←m[hm](Zin(0)).

In the same way if a collision occurs between two particles of im, the sets 1Rm←n,t
((si,s̄i)i,(κj)j)

(Zin)

vanish and the same equality holds.
Finally, suppose that the collision happens between one particle of im and another particle im+1.

Up to a permutation of the indices, the collision happens between i1 and im+1. Removing all the
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vanishing terms,∑
n≥m

∑
(im+1,··· ,in)

Φtm←n[hm](Zin) =hm

(
Zm(t,

(
t,
(
()0, (0)m)

)
Zim)

)
− hm

(
Zm+1

(
t,
(
((1,−1)), (0)m+1

)
,Zim+1

))
+ hm

(
Zm+1

(
t,
(
((1, 1)), (0)m+1

)
,Zim+1

))
.

In the two first terms on the right hand side, particles move along straight lines because there is no
scattering at the collision. Thus these two terms compensate. In the third term, since particles in
im+1 are deviated at the collision,

Zm+1

(
t,
(
((1, 1)), (0)m+1

)
,Zim+1

)
= Zim(t)

and

hm(Zim)(t) = hm

(
Zm(t,

(
t,
(
(), (0)m)

)
Zim)

)
− hm

(
Zm+1

(
t,
(
((1,−1)), (0)m+1

)
,Zim+1

))
+hm

(
Zm+1

(
t,
(
((1, 1)), (0)m+1

)
,Zim+1

))
,

which concludes the proof. �

We conclude this section by observing that, applied to the covariance, the theorem gives the
following formula:

Eε
[
ζtε(h)ζ0

ε (g)
]

=
∑
n≥1

1

µε
1
2

Eε

 ∑
(i1,··· ,in)

Φt1←n[h](Zin(0))ζ0
ε (g)

 .
As recalled in the introduction, since we do not know how take account the cancellations due

to the factors s̄i, we can only bound Φt1←n[h] by means of an evaluation of the number of collision
parameters. The problem is then that there no a priori bound on such number. To overcome this
difficulty, we are led to introduce a conditioning of the invariant measure.

2.3. Conditioning. We shall need two conditionings of the initial data.
The first one is a symmetric conditioning on the full particle configuration.

Definition 2.2 (Distance cluster). Let L be a positive real number and Zn ∈ Dn be a particle
configuration. We consider the unoriented graph of vertices {1, · · · , n} and of edges

{(i, j) ∈ [1, n]2, d(xi, xj) < L}.
A L-distance cluster is one of its connected component.

Let γ > 0 be an integer depending only on the dimension, δ > 0 a time scale (which will be
a power of ε) and V > 0 a velocity bound. In the following, we shall only look at γδV-distance
clusters and we will therefore drop the "γδV".

We construct Υε ⊂ Dε the set of particle configurations such that for any time τ ∈ {0, δ, 2δ, · · · , t},
there is no distance cluster of size bigger than γ at time τ , and inside any subset of particles
ω ⊂ [1,N ] with less than γ elements, 1

2‖Vω(τ)‖2 is bounded by 1
2V

2. We have the following bound
on the measure of the complement of Υε:

Proposition 2.3. There exists a constant Cγ depending only on γ and on the dimension such that

(2.5) Pε (Υc
ε) ≤ Cγ

t

δ

(
µε
(
µεδ

dVd
)γ

+ µγεe
−V2/4

)
.
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Proof.

Pε
(

Υc
ε

)
≤

t/δ∑
k=0

Eε

 ∑
(i1,··· ,iγ+1)

1Xiγ+1
(kδ) form a

distance cluster

+

γ∑
k′=1

∑
(i1,··· ,ik′ )

1‖Vi
k′

(kδ)‖≥V


≤ t

δ

(
µγ+1
ε

∫
1Xγ+1 form a

distance cluster

M⊗(γ+1)dZγ+1 +

γ∑
k′=1

µγε

∫
1‖Vk′‖≥VM

⊗(γ+1)dZγ+1

)

≤ Cγ
t

δ

(
µγ+1
ε

(
(γδV)d

)γ
+ µγεe

− V2

2

)
where Cγ is a constant depending only on the dimension and γ. We used that the Gibbs measure
is time invariant and that the particles Xγ have to be at distance less than γδV from xγ+1 in order
to form a distance cluster. �

Hence, if we set δ := ε1− 1
2d , V := | log ε| and fix γ ∈ N large enough, Pε(Υc

ε) is O(εd).
The second conditioning is an asymmetric conditioning. We consider only a given, finite
particle configuration Zr. For fixed pseudotrajectory parameters ((si, s̄i)1≤i≤n−1, (κj)1≤j≤n), the
configuration Zr ∈ Drε forms a collision cluster if the collision graph of Zr(τ, ((si, s̄i)i, (κj)j), Zr)
on the time interval [0, δ] is connected. We define local recollision of Zr(τ) as the first collision
(forward in time) which creates a cycle in the collision graph.

Definition 2.3. We define the function χr : Drε 7→ {0, 1} as the indicator function of:

{Zr ∈ Drε , ∃((si, s̄i)1≤i≤n−1, (κj)1≤j≤n), Zr(τ) forms a collision clusterwith local recollision} .

We shall sometimes drop the index r from χr, when the cardinality of the cluster is clear from the
context.

We have the following L1 bound on χr:

Proposition 2.4. There exists a positive constant Cr and some α > 0 depending only on the
dimension such that

(2.6)
∫

Λr−1×Br(V)

χr(Zr)M
⊗r(Vr)dX2,rdVr ≤ Crµ−r+1

ε δ2
(
µεδ

dVd
)r−3

εα

where Br(V) is the ball of radius V in dimension rd.

Proof. First of all we observe that, if the pseudotrajectories Zr(τ) form a collision cluster for some
collision parameters, the initial positions in the configuration Zr need to be close enough. As the
speed of each particles is globally bounded by V, there exists, for any couple of particle (i, i′), a
finite sequence i = j1, j2, · · · , jk = i′ of two by two distinct indices such that

|xjl − xjl+1
| ≤ 2Vδ.

Thus, the distance between any two particles of Zr is bounded by 2rVδ. We need, however, a more
precise geometric conditioning in order to obtain (2.6).

Let Zr ∈ Drε be such that χ(Zr) is non zero. Then, there exists a set of pseudotrajectory parame-
ters ((si, s̄i)i, (κj)j) such that the pseudotrajectory Zr(τ, ((si, s̄i)i, (κj)j)) has a local recollision. We
define τs the time of such first local recollision. We construct a second set of recollision parameters:

κ′j = κj(0)− κj(τs).
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Then for any τ ∈ [0, τs],

Zr(τ, ((si, s̄i)i, (κj)j)) = Zr(τ, ((si, s̄i)i, (κ′j)j))

and for all j, κ′j(τs) = 0. Moreover, on [0, τs), the pseudotrajectory has no local recollision. Thus
κ′j is smaller than r − 1.

Let $ ⊂ [1, r] be the connected component of the collision graph G[0,τs]
r which contains the two

particles involved in the local recollision. Because particles in $ do not interact with particles
in $c, Zr(t, Zr) restricted to particles $ and to the time interval [0, τs] can be represented by a
pseudotrajectory Z|$|(τ, ((s′′i , s̄′′i )i, (κ

′′
j )j), Z$) for some collision parameters ((s′′i , s̄

′′
i )i, (κ

′′
j )j). Note

that we can take the κ′′j smaller than the maximum of the κ′j and thus smaller than r − 1. This
gives a more precise constraint on Z$, and {Zr, χr(Zr) = 1} is included in

⋃
$⊂{1,··· ,r}

⋃
(si,s̄i)i≤|$|

(κj)∈[0,r−1]|$|

Zr
∣∣∣∣∣∣

the collision graph of
Z|$|(τ, ((si, s̄i)i, (κj)j), Z$)

is connected

 .

Note this union runs over a finite set of parameters.
We can now fix the pseudotrajectory parameters. The following standard estimation holds:∫
Λ|$|−1×B|$|(V)

1Z|$|(τ) forms a cluster
with local recollision

e−
1
2‖Vr‖

2

dX$\{min$}dV$ ≤ C|$|µ−|$|+1
ε δ2

(
µεδ

dVd
)|$|−3

εα

where we used that |$| ≥ 2 and that ε| log ε|/δ = O(εα) for some α. It follows from the same proof
than for Lemma 5.3 below, replacing in the bound the two times scales θ and t by δ (the unique
time scale in the present case) and replacing the number of particle n′′ by |$|.

Using the distance constraints on Z$c and summing on all possible parameters, we obtain the
announced bound. �

Finally, we denote X(i1,··· ,in) : {ZN ∈ Dε, N ≥ max in} 7→ {0, 1} the indicator function of the
set {

ZN ∈ Dε
∣∣∣∃$, $ ∩ (i1, · · · , in) 6= ∅, χ(Z$) = 1

}
.

Note that Xin depends on the ‘background particles’ different from (i1, · · · , in).
Note also that we have:

(2.7) X(i1,··· ,in)(ZN ) = 1 −
∏

$⊂{1,··· ,N}
$∩{i1,··· ,in}6=∅

(
1− χ(Z$)

)
.

The two conditionings introduced in this section allow us to bound the number of recollisions,
as explained next. Let Zn ∈ Dnε be an initial position such that there is no distance cluster of size
bigger than γ (first conditioning) and for any σ ⊂ {1, · · · , n}, χ(Zσ) = 0 (second conditioning). Fix
now collision parameters ((si, s̄i)i, (κj)j) such that the pseudotrajectory Zn(t) has no recollision on
[δ, t] (which will be ensured by a tuned sampling of collisions, introduced in the following section).
Then due to the first, symmetric conditioning, any particle can only meet γ − 1 different particles
on [0, δ]. Moreover due to the second, asymmetric conditioning, there is no local recollision on [0, δ].
This implies that there are at most γ−1 recollisions per particle. In particular, any pseudotrajectory
of this type can be parameterized by collision parameters

((si, s̄i)1≤i≤n−1, (κj)1≤j≤n) ∈ {±1}2(n−1) × [0, γ − 1]n.
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2.4. Sampling. Let τ > 0. Using the two conditionings of the previous section, for ZN ∈ Υε ∩{
Xim (ZN ) = 0

}
we have

(2.8) hm
(
Zim(τ)

)
=
∑
n≥m

∑
(im+1,··· ,in)

Φγ,τm←n[hm](Zin(0))

where

(2.9) Φγ,τm←n[hm](Zn) :=
1

(n−m)!

∑
(si,s̄i)i≤n−m

(κj)j∈[1,γ−1]n

n−m∏
i=1

s̄i1Rm←n,γ,τ
((si,s̄i),(κj))

hm(Zn(τ)) .

For generic t and particle configuration, we can then perform the following decomposition on Υε∑
im

hm
(
Zim(t)

)
=
∑
im

hm(Zim(t))Xim(ZN (t− δ)) +
∑
im

hm(Zim(t))
(
1−Xim(ZN (t− δ))

)
=
∑
im

hm(Zim(t))Xim(ZN (t− δ))

+
∑
n≥m

∑
in

Φγ,δm←n[hm](Zin(t− δ))
(
1−Xim(ZN (t− δ))

)
.

(2.10)

Let Φγ,τm,n[hm] be the symmetrization Φγ,τm←n[hm]:

Φγ,τm,n[hm](Zn) :=
1

n!

∑
σ∈Sn

Φγm←n[hm](zσ(1), · · · , zσ(n)).

There is a more explicit formula for such functional. We define Rm,n,γ,τ((si,s̄i),(κj))
⊂ Dnε as the set of

initial data such that pseudotrajectories Zn(·) have m remaining particles at time τ , κj(τ) = 0 for
all j and there is no local recollision. Then

(2.11) Φγ,τm,n[hm](Zn) :=
1

n!

∑
(si,s̄i)i≤n−m

(κj)j ,∈[0,γ−1]

n−m∏
i=1

s̄i1Rm,n,γ,τ
((si,s̄i),(κj))

hm(Zn(τ)).

Finally we want to isolate pseudotrajectories with no recollision whatsoever: these will form
the main contribution in the Boltzmann-Grad limit. We then define (i) the development along
pseudotrajectories without recollision

(2.12) Φ0,τ
m,n[hm](Zn) :=

1

n!

∑
(si,s̄i)i≤n−m

n−m∏
i=1

s̄i1Rm,n,τ
(si,s̄i)

hm(Zn(τ)),

where Rm,n,τ(si,s̄i)
⊂ Rm,n,γ,τ(si,s̄i),(0)j

is such that the pseudotrajectories have no recollision, and (ii) the
development along pseudotrajectories with non-pathological recollisions

(2.13) Φ>,τm,n[hm] := Φγ,τm,n[hm]− Φ0,τ
m,n[hm].
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We bring together all these decompositions and obtain, on Υε,∑
im

hm
(
Zim(τ)

)
=
∑
n≥m

∑
in

Φ0,δ
m,n[hm](Zin(τ − δ)) +

∑
n≥m

∑
in

Φ>,δm,n[hm](Zin(τ − δ))

+
∑
im

hm(Zim(τ))Xim(ZN (τ − δ))

−
∑
n≥m

∑
in

Φγ,δm←n[hm](Zin(τ − δ))Xim(ZN (τ − δ)).

(2.14)

The first term is an expansion along pseudotrajectories with no recollision. It is the main part of
the sum. The rest takes into account the recollisions in the hard sphere dynamics.

We iterate this decomposition:

∑
im

hm
(
Zim(τ)

)
=
∑
n≥m

∑
in

Φ0,τ
m,n[hm](Zin(0)) +

τ/δ∑
k=0

∑
n≥m

∑
in

Φ>,kδm,n [hm](Zin(τ − kδ))

+
∑
n≥m

∑
in

Φ0,(k−1)δ
m,n [hm](Zin(τ − (k − 1)δ))Xim(ZN (τ − kδ))

−
∑

n′≥n≥m

∑
in′

Φγ,δn←n′
[
Φ0,(k−1)δ
m,n [hm]

]
(Zin′ (τ − kδ))Xim(ZN (τ − kδ)).

The final ingredient is now a second sampling on a longer time scale θ = 1/β log | log ε| controlling
the growth of the number of collisions. We denote K := t/θ ∈ N and K ′ := θ/δ ∈ N.

We obtain the following decomposition

(2.15) Eε
[
ζtε(h)ζ0

ε (g)
]

= Gmain
ε (t) +Gclust

ε (t) +Gexp
ε (t) +Grec,1

ε (t) +Grec,2
ε (t)

with Gmain
ε (t) the main part:

(2.16) Gmain
ε (t) :=

∑
n:=(nj)j≤K

0<nj−nj−1≤2j

Eε

µ−1/2
ε

∑
inK

Φ0
n[h]

(
ZinK

(0)
)
ζ0
ε (g)


where

Φ0
n[h] := Φ0,θ

nK−1,nK ◦ Φ0,θ
nK−2,nK−1

· · · ◦ Φ0,θ
1,n1

[h]

is the development of h along pseudotrajectories with nk annihilations on the time interval [t− (k−
1)θ, t− kθ] and no recollision, denoting n = (n1, · · · , nK); moreover:

(2.17) Gclust
ε (t) := Eε

[
ζtε(h)ζ0

ε (g)1Υcε

]
−

∑
n1≤···≤nK
nj−nj−1≤2j

Eε

µ−1/2
ε

∑
inK

Φ0
n[h]

(
ZinK

(0)
)
ζ0
ε (g)1Υcε


corresponding to the symmetric conditioning;

(2.18) Gexp
ε (t) :=

K∑
k=1

∑
n1≤···≤nk−1

nj−nj−1≤2j

∑
nk>2k+nk−1

Eε

µ−1/2
ε

∑
ink

Φ0
n[h]

(
Zink

(t− kθ))
)
ζ0
ε (g)1Υε
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corresponding with trees with superexponential growth;

Grec,1
ε (t) :=

∑
1≤k≤K−1
1≤k′≤K′

∑
n1≤···≤nk
nj−nj−1≤2j

∑
n′′≥n′≥nk

Eε

µ−1/2
ε

∑
in′′

Φ>,k
′

n,n′,n′′ [h]
(
Zin′′ (ts)

)
ζ0
ε (g)1Υε

(2.19)

corresponding to (non local) recollisions; and finally Grec,2
ε (t):

∑
1≤k≤K−1
1≤k′≤K′

∑
n1≤···≤nk
nj−nj−1≤2j

 ∑
n′≥nk

Eε

µ−1/2
ε

∑
(i1,··· ,in′ )

Φ0,k′

n,n′ [h]
(
Zink

(ts + δ)
)
Xin′

(
ZN (ts)

)
ζ0
ε (g)1Υε



−
∑

n′′≥n′≥nk

Eε

µ−1/2
ε

∑
(i1,··· ,in′′ )

Φγ,δn′←n′′
[
Φ0,k′

n,n′ [h]
] (

Zin′′ (ts)
)
Xin′

(
ZN (ts)

)
ζ0
ε (g)1Υε



(2.20)

corresponding to pathological pseudotrajectories. In the last two terms, we have denoted ts :=
t− (k − 1)θ − k′δ the stopping time, and

• Φ0,k′

n,n′ [h] := Φ0,k′δ
nk,n′

◦Φ0
n[h], the pseudotrajectory development with no recollision, n′ annihi-

lations on [0, (k′ − 1)δ] and for j < k, nj annihilations on [(k′ − 1)δ + (k − j)θ, (k′ − 1)δ +
(k − j + 1)θ],

• Φ>,k
′

n,n′,n′′ [h] := Φ>,δn′,n′′ ◦ Φ0,k′

n,n′ [h], the pseudotrajectory development with no recollision on
[δ, k′δ + kθ], n′′ annihilations on [0, δ], n′ annihilations on [δ, k′δ] and for j < k and nj
annihilations on [k′δ + (k − j)θ, k′δ + (k − j − 1)θ], and at the least one recollision.

We stress that, thanks to the conditioning, each pseudotrajectory appearing in this representation
has at most γ recollisions per particle.

3. Quasi-orthogonality estimates

The different error terms obtained in the previous section are of the form

Eε

∑
in

Φn[h](Zin(ts))ζ
0
ε (g)1Υε


with Φn : L∞(D) → L∞(Dn) some continuous functional. In order to bound the errors, we will
need an L2(Pε) bound on

∑
in

Φn[h](Zin). Such bound is derived in the following sections from
detailed estimations on the functionals Φn[h]. We will use, in particular, that we can bound the
Φn[h](Zn) by looking only at the relative positions of particles inside Zn.

In the following we denote for y ∈ Λ

(3.1) τy :

{
Dn → Dn

(Xn, Vn) 7→ (x1 + y, · · · , xn + y, Vn).

Theorem 3.1. Fix m < n two positive integers, and gn, hm two functions on Dn and Dm such
that there exists a finite sequence (c0, c

′
0, c1, · · · , cn) ∈ Rn+2

+ bounding gn, hm in the following way:

(3.2)
∫

x1=0

sup
y∈Λ

∣∣gn(τyZn)∣∣M⊗n(Vn)dX2,ndVn ≤ c0,
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(3.3)
∫

x1=0

sup
y∈Λ

∣∣hm(τyZm)∣∣M⊗m(Vm)dX2,mdVm ≤ c′0

and for all l ∈ [1,m]∫
x1=0

sup
y∈Λ

∣∣gn(τyZn)hm(τyZn+1−l,n+m−l
)∣∣M⊗(n+m−l)(Vn+m−l)dX2,n+m−ldVn+m−l

≤ µl−1
ε

nl
cl.

(3.4)

There exists a constant C > 0 depending only on the dimension such that

(3.5)
∣∣Eε[gn]∣∣ ≤ Cnc0, ∣∣Eε[hm]∣∣ ≤ Cmc′0

and denoting

(3.6) gn ~l hm(Zn+m−l) =
1

(n+m− l)!
∑

σ∈Sn+m−l

gn(Zσ([1,n]))hm(Zσ([n+1−l,n+m−l])),

Eε
[
µεĝnĥm

]
=

m∑
l=1

(
n

l

)(
m

l

)
l!

µl−1
ε

Eε
[
gn ~l hm

]
+ O

(
Cn+mc0c

′
0ε
)
.(3.7)

In particular

(3.8) |Eε
[
µεĝnĥm

]
| ≤ Cn+m

m∑
l=1

cl + Cn+mc0c
′
0 ε.

Proof of Theorem 3.1.
• We begin by the proof of (3.5).
Using invariance under permutation,

Eε[gn] =
1

µnεZε

∑
p≥n

µpε
p!

∫ ∑
(i1,···in)
∀k,ik≤p

gn(Zn)e−H
ε
p(Zp) dZp

(2π)dp/2

=
1

µnεZε

∑
p≥n

µpε
p!

p!

(n− p!)

∫
gn(Zn)e−H

ε
p(Zp) dZp

(2π)dp/2

=
1

Zε

∑
p≥0

µpε
p!

∫
gn(Zn)e−V

ε
n+p(Xn,Xp)M⊗ndZndXp.

We denote in the following Ω := {Xn, x1, · · · , xp} and for X,Y ∈ Ω,

ϕ(X,Y ) := −1d(X,Y )≤ε

and we decompose exp
(
−Vεn+p(Xn+1, Xp)

)
e−V

ε
n+p(Xn+1,Xp) = e−V

ε
n(Xn)

∏
(X,Y )∈Ω2

X 6=Y

(1 + ϕ(X,Y )) = e−V
ε
n(Xn)

∑
G∈G(Ω)

∏
(X,Y )∈E(G)

ϕ(X,Y )
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where G is the set of non oriented graphs on Ω and E(G) the set of edges of G. Denoting by C(ω)
the set of connected graphs on ω,

exp
(
−Vεn+p(Xn+1, Xp)

)
=

∑
ω⊂[1,p]

(
e−V

ε
n(Xn)

∑
G∈C(ω∪{Xn})

∏
(X,Y )∈E(G)

ϕ(X,Y )
∑

G∈G(ωc)

∏
(X,Y )∈E(G)

ϕ(X,Y )

)

=
∑

ω⊂[1,p]

(
e−V

ε
n(Xn)−Vε|ωc|(Xωc )

∑
G∈C(ω∪{Xn})

∏
(X,Y )∈E(G)

ϕ(X,Y )

)

=:
∑

ω⊂[1,p]

e−V
ε
|ωc|(Xωc )ψnp (Xn, Xω) .

(3.9)

Thus, using exchangeability,

Eε[gn] =
1

Zε

∑
p≥0

∑
p1+p2=p

µpε
p!

p!

p1!p2!

∫
gn(Zn)ψnp1

(Xn, Xp1
)e−V

ε
p2

(X′p2
)M⊗ndZndXp1

dX ′p2

=

 1

Zε

∑
p≥0

µpε
p!

∫
e−V

ε
p(Xp)dXp

∑
p≥0

µpε
p!

∫
gn(Zn)ψnp (Xn, Xp)M

⊗ndZndXp


=
∑
p≥0

µpε
p!

∫
gn(Zn)ψnp (Xn, Xp)M

⊗ndZndXp.

(3.10)

We recall Penrose tree inequality (see [19, 6, 16]),

(3.11)

∣∣∣∣∣∣
∑

C∈C(Ω)

∏
(X,Y )∈E(C)

ϕ(X,Y )

∣∣∣∣∣∣ ≤
∑

T∈T (Ω)

∏
(X,Y )∈E(T )

|ϕ(X,Y )|

with T (Ω) the set of trees (minimally connected graphs) on Ω. Fix τ−x1Xn (the relative position
between particles). Integrating a constraint ϕ(xi, xj) provides a factor cdε

d, ϕ(Xn, xj) a factor
ncdε

d (where cd is the volume of a sphere of diameter 1). As there are

(p− 1)!

(d0 − 1)!(d1 − 1)! · · · (dp − 1)!

trees with specified vertex degrees d0, · · · , dp associated to vertices Xn, x1, · · · , xp (see [16, 6]), we
get ∣∣∣∣ ∫ ψnp (XnXp)dXpdx1

∣∣∣∣ ≤ ∑
d1,··· ,dp≥1
d0+···+dp=2p

(p− 1)!

(d0 − 1)!(d1 − 1)! · · · (dp − 1)!
nd0(cdε

d)p

≤ (p− 1)!(cdε
d)p

∑
d0≥1

nd0

(d0 − 1)!

∑
d1≥1

1

(d1 − 1)!

 · · ·
∑
dp≥1

1

(dp − 1)!


≤ (p− 1)!

(
cdε

d
)p
nen+p.

(3.12)
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We can integrate on the rest of parameters using (3.2). Hence

|Eε[gn]| ≤
∑
p≥0

(p− 1)!
(
cdeε

d
)p
nen

p!

∫
|gn(Zn)|e−

‖Vn‖2
2

dZn
(2π)dn/2

≤ c0
∑
p≥0

Cn(Cε)p

which converges for ε small enough. This concludes the proof of (3.5).

• We treat now (3.7). Recall first that

Eε
[
µεĝnĥm

]
=

1

µn+m−1
ε

Eε

∑
in

gn(Zin)
∑
j
m

hm(Zj
m

)

− µεEε [gn]Eε [hm] .

Let us count the number of ways such that in and j
m

can intersect on a set of length l. We have
to choose two sets A ⊂ [n] and A′ ⊂ [m] of length l, and a bijection σ : A → A′ such that for all
indices k ∈ A, ik = jσk and that iAc does not intersect j

(Ac)′
. Thus using the symmetry,

Eε
[
µεĝnĥm

]
=

m∑
l=1

(
n

l

)(
m

l

)
l!

µl−1
ε

Eε
[
gn ~l hm

]
+ µε

Eε

 1

µn+m
ε

∑
in+m

gn(Zin)hm(Zin+1,n+m
)

− Eε [gn]Eε [g]

 .

To estimate the error term in the second line, we write

Eε

[
1

µn+m
ε

∑
in+m

gn(Zin)hm(Zin+1,n+m
)

]

=
1

Zε

∑
p≥0

µpε
p!

∫
gn(Zn)hm(Z ′m) exp

(
−Vεn+m+p(Xn, X

′
m, Xp)

)
M⊗ndZnM

⊗mdZ ′mdXp.

We denote in the following Ω := {Xn, X
′
m, x1, · · · , xp} and we have that

exp
(
−Vεn+m+p(Xn, X

′
m, Xp)

)
= e−V

ε
n(Xn)e−V

ε
m(X′m)

∏
(X,Y )∈Ω2

X 6=Y

(1 + ϕ(X,Y ))

= e−V
ε
n(Xn)e−V

ε
m(X′m)

∑
G∈G(Ω)

∏
(X,Y )∈E(G)

ϕ(X,Y ) .
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Partitioning on the connected components of Xn and X ′m,

exp
(
−Vεn+m+p(Xn, X

′
m, Xp)

)
=

∑
ω⊂[1,p]

(
exp

(
−Vεn(Xn)− Vεm(X ′m)− Vε|ωc|(Xωc)

) ∑
G∈C(ω∪
{Xn,X′m})

∏
(X,Y )∈E(G)

ϕ(X,Y )

)

+
∑

ω1,ω1⊂[1,p]
ω1∩ω2=∅

ψn|ω1|(Xn, Xω1
)ψm|ω2|(X

′
m, Xω2

)e−V
ε
|(ω1∪ω2)c|(X(ω1∪ω2)c )

=:
∑

ω⊂[1,p]

ψn,m|ω| (Xn, X
′
m, Xω)e−V

ε
||ωc|(Xωc )

+
∑

ω1,ω1⊂[1,p]
ω1∩ω2=∅

ψn|ω1|(Xn, Xω1
)ψm|ω2|(X

′
m, Xω2

)e−V
ε
|(ω1∪ω2)c|(X(ω1∪ω2)c ).

Using the invariance under permutation and (3.10)

1

Zε

∑
p≥0

µpε
p!

∫
gn(Zn)hm(Z ′m)

∑
ω1,ω1⊂[1,p]
ω1∩ω2=∅

ψn|ω1|(Xn, Xω1
)ψm|ω2|(X

′
m, Xω2

)e−V
ε
|(ω1∪ω2)c|(X(ω1∪ω2)c )

×M⊗(n+m)dZndZ
′
mM

⊗ndZnM
⊗n′dZ ′n′dXp

=
1

Zε

∑
p≥0

∑
p1+p2+p3=p

µpε
p!

p!

p1!p2!p3!

∫
gn(Zn)hn′(Z

′
n′)ψ

n
p1

(Xn, Xp1
)ψ1
p2

(xn+1, X
′
p2

)

×
(
M⊗ndZndXp1

)(
M⊗n

′
dZ ′n′dX

′
p2

)(
e−V

ε
p3

(X′′p3
)dX ′′p3

)
= Eε[gn]Eε[hn′ ],

and in the same way

1

Zε

∑
p≥0

µpε
p!

∫
gn(Zn)hm(Z ′m)

∑
ω⊂[1,p]

ψn,m|ω| (Xn, X
′
m, Xω)e−V

ε
||ωc|(Xωc )M⊗ndZnM

⊗mdZ ′mdXp

=
1

Zε

∑
p≥0

∑
p1+p2=p

µpε
p!

p!

p1!p2!

∫
gn(Zn)hm(Z ′m)ψn,m|ω| (Xn, X

′
m, Xp1

)

e−V
ε
p2

(X′p2
)M⊗(n+m)dZndZ

′
mdXp1

dX ′p2

=
∑
p1≥0

µpε
p1!

∫
gn(Zn)hm(Z ′m)ψn,m|ω| (Xn, X

′
m, Xp1

)M⊗(n+m)dZndZ
′
mdXp1

dX ′p2
.

Using again Penrose tree inequality,

(3.13)
∣∣∣ψn,m|ω| (Xn, X

′
m, Xp1

)
∣∣∣ ≤ ∑

T∈T (Ω)

∏
(X,Y )∈E(T )

|ϕ(X,Y )| .

Fix τ−x1
Xn and τ−x′1X

′
m. Integrating a constraint ϕ(xi, xj) provides a factor cdε

d, ϕ(Xn, xj) a
factor ncdεd, ϕ(X ′m, xj) a factor mcdε

d and ϕ(Xn, X
′
m) a factor nmcdε

d. Denoting d0, d
′
0, d1 · · · , dp
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the degrees of Xn, X
′
m, x1, · · · , xm we get∣∣∣∣ ∫ ψn,m|ω| (Xn, X

′
m, Xp1

)dXpdx1dx
′
1

∣∣∣∣
≤

∑
d′0,d0,··· ,dp≥1

d′0+d0+···+dp=2p

p!

(d′0 − 1)(d0 − 1)! · · · (dp − 1)!
nd0md′0(cdε

d)+1

≤ p!
(
cdε

d
)p+1

nmen+m+p.

(3.14)

We can integrate on the rest of parameters using (3.2) and (3.3), and finally

µε

Eε

 1

µn+m
ε

∑
in+m

gn(Zin)hm(Zin+1,n+m
)

− Eε [gn]Eε [g]

 .

≤ c0c′0µε
∑
p≥0

µpε
p!
p!
(
cdε

d
)p+1

nmen+m+p

≤ µεεdnm(cde)
n+mc0c

′
0

∑
p≥0

(ecdε)
p

≤ εCn+m+1
∑
p≥0

(ecdε)
p

which converges for ε small enough. �

Note also the following bound in Lp norms of the fluctuation field.

Theorem 3.2. For any p ∈ [2,∞), there exists a constant Cp > 0 such that

(3.15)
(
Eε
[
ζ0
ε (g)p

])1/p ≤ Cp‖g‖Lp(M(v)dz).

The proof can be found in Appendix A of [7].
From these estimations we can deduce the following corollary:

Corollary 3.3. Let hn be a test function satisfying the conditions of Theorem 3.1. Then there
exists a constant C > 0 such that∣∣∣∣∣Eε

[
µ−1/2
ε

∑
(i1,··· ,in)

hn(Zin(ts))ζ
0
ε (g)1Υε

]∣∣∣∣∣
≤ Cnµn−1

e Eε
[
ζ0
ε (g)2

]1/2c0 +

(
n∑
l=1

cl

)1/2
 .

(3.16)

Proof.

Eε

[
µ−1/2
ε

∑
(i1,··· ,in)

hn(Zin(ts))ζ
0
ε (g)1Υε

]
= µn−1

ε Eε

[
µ1/2−n
ε

∑
(i1,··· ,in)

hn(Zin(ts))ζ
0
ε (g)1Υε

]

= µn−1
ε

(
Eε
[
µ1/2
ε ĥn(ZN (ts)) ζ

0
ε (g)1Υε

]
+ Eε [hn]Eε

[
µ1/2
ε ζ0

ε (g)1Υε

])
= µn−1

ε

(
Eε
[
µ1/2
ε ĥn(ZN (ts)) ζ

0
ε (g)1Υε

]
+ Eε [hn]Eε

[
ζ0
ε (g)µ1/2

ε

(
1− 1Υcε

) ])
.
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By Eε[ζ0
ε (g)] = 0 and using Cauchy-Schwartz inequality, we find∣∣∣∣∣Eε

[
µ−1/2
ε

∑
(i1,··· ,in)

hn(Zin(ts))ζ
0
ε (g)1Υε

]∣∣∣∣∣
≤ µn−1

ε

(
Eε
[
µε

[
ĥn

]2] 1
2

Eε
[
ζ0
ε (g)2

] 1
2 + Eε [hn]Eε

[
ζ0
ε (g)2

] 1
2
(
µεPε

[
Υc
ε

]) 1
2

)
.

We apply now Theorem 3.1. The bound on Pε [Υc
ε] given in section 2.3 and the bound on the Lp

norm of ζ0
ε (g) (3.15) lead to the stated corollary. �

4. Clustering estimations

The objective of this section is to bound Gclust
ε (t) and Gexp

ε (t), defined by

Gclust
ε (t) := Eε

[
ζtε(h)ζ0

ε (g)1Υcε

]
−

∑
n1≤···≤nK
nj−nj−1≤2j

Eε

µ−1/2
ε

∑
(i1,··· ,inK )

Φ0
n[h]

(
ZinK

(0)
)
ζ0
ε (g)1Υcε

 ,

Gexp
ε (t) :=

K∑
k=1

∑
n1≤···≤nk−1

nj−nj−1≤2j

∑
nk>2k+nk−1

Eε

µ−1/2
ε

∑
(i1,··· ,ink )

Φ0
n[h]

(
Zink

(t− kθ))
)
ζ0
ε (g)1Υε

 .
Proposition 4.1. For ε > 0 small enough,

(4.1)
∣∣Gexp

ε (t) +Gclust
ε (t)

∣∣ ≤ C‖g‖ ‖h‖ (ε1/2(Ct)2t/θ + tθ1/2
)

To obtain the stated result, we need first the following bounds on the pseudotrajectory develop-
ments without recollisions of type Φ0

n[h]:

Proposition 4.2. Fix k ∈ N and n := (n1, · · · , nk) ∈ Nk with n1 ≤ n2 ≤ · · · ≤ nk. Then

(4.2)
∫
x1=0

sup
y∈Λ

∣∣Φ0
n[h](τyZnk)

∣∣M⊗nkdVnkdX2,nk ≤
‖h‖
µnk−1
ε

Cnkθnk−nk−1tnk−1−1,

and, for m ∈ [1, nk],∫
x1=0

sup
y∈Λ

∣∣Φ0
n[h](τyZnk)Φ0

n[h](τyZnk−m+1,2nk−m)
∣∣M⊗(2nK−m)dV2nK−mdX2,2nK−m

≤ ‖h‖2

nmk µ
2nk−m−1
ε

Cnkθnk−nk−1tm+nk−1−1.

(4.3)

Indeed using Corollary 3.3 and the previous estimations,∣∣∣∣∣Eε
[
µ−1/2
ε

∑
(i1,··· ,ink )

Φ0
n[h]

(
Zink

(t− kθ)
)
ζ0
ε (g)1Υε

]∣∣∣∣∣
≤ ‖g‖‖h‖

Cnkθnk−nk−1tnk−1−1 +

(
nk∑
m=1

Cnkθnk−nk−1tnk−1−1+m

)1/2


≤ ‖g‖‖h‖Cnkθ(nk−nk−1)/2tnk−1,
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and in the same way,

Eε

[
µ−1/2
ε

∑
(i1,··· ,inK )

Φ0
n[h]

(
ZinK

(0)
)
ζ0
ε (g)1Υcε

]
= O

(
ε1/2‖g‖‖h‖Cnktnk−1

)
.

Summing on all possible (n1, · · · , nk),

|Gexp
ε (t)| ≤

K∑
k=1

∑
n1≤···≤nk−1

nj−nj−1≤2j

∑
nk>2k+nk−1

‖g‖‖h‖Cnkθ(nk−nk−1)/2tnk−1

≤ C‖g‖‖h‖
K∑
k=1

2k
2(
Ctθ1/2

)2k ≤ C‖g‖‖h‖ t θ1/2

(4.4)

because the series converges for θ small enough, and∣∣Gclust
ε (t)

∣∣ ≤ C‖g‖‖h‖ε1/2 +
∑

n1≤···≤nK
nj−nj−1≤2j

ε1/2‖g‖‖h‖Cnktnk−1 ≤ C‖g‖‖h‖ε1/22K
2

(Ct)2K .
(4.5)

This concludes the proof of (4.1).

Proof of (4.2). We recall that

Φ0
n[h] = Φ0,θ

nK−1,nK ◦ Φ0,θ
nK−2,nK−1

· · · ◦ Φ0,θ
1,n1

[h] =
1

nk!

∑
(si,s̄i)i≤nk−1

∏
i

s̄i1Rn
(si,s̄i)

h(Znk(kθ))

and thus

(4.6)
∣∣∣Φ0
n[h]

∣∣∣ ≤ ‖h‖
nk!

∑
(si,s̄i)i≤nk−1

1Rn
(si,s̄i)

where Rn(si,s̄i) ⊂ D
nk
ε is the set of initial parameters Znk such that the pseudotrajectory Znk(τ,

(si, s̄i)i, (0)j , Znk) has nl remaining particles at time (k− l)θ. Note that the left hand side of (4.6)
is invariant under translations. Hence it is sufficient to fix x1 = 0 and integrate with respect to
(X2,nk , Vnk).

We define the clustering tree T> := (νi, ν̄i)1≤i≤nk−1 where the i-th collision happens between
particles νi and ν̄i (and νi < ν̄i). Since in the present section pseudotrajectories have no recollision,
the clustering tree is just the collision graph where we forget the collisions times (but not their
order). It can be used to parameterize a partition of Rn(si,s̄i)i .

Let us fix a clustering tree. We perform the following change of variables

X2,nk 7→ (x̂1, · · · , x̂nk−1), ∀i ∈ [1, nk − 1], x̂i := xνi − xν̄i
Fix then ti+1 the time of the (i + 1)-th collision, as well as the relative positions x̂1, · · · , x̂i−1.

We denote Ti = θ if i ≤ nk − nk−1, t else (at least nk − nk−1 clustering collisions happen before
time θ) and the i-th collision set as

BT>,i :=
{
x̂i

∣∣∣∃τ ∈ (0, Ti ∧ ti+1), |xνi(τ)− xν̄i(τ)| ≤ ε
}
.
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Because particles xνi(τ) and xν̄i(τ) are independent until their first meeting, we can perform the
change of variable x̂i 7→ (ti, ηi) where ti is the first meeting time and

ηi :=
xνi(ti)− xν̄i(ti)
|xνi(ti)− xν̄i(ti)|

.

This sends the Lebesgue measure dx̂i to the measure µ−1
ε ((vνi(ti)− vν̄i(ti)) · ηi)+dηidti and∫

1BT>,i
dx̂i ≤

C

µε
|vνi(ti)− vν̄i(ti)|

∫ Ti∧ti+1

0

dti.

We sum now on every possible edge (νi, ν̄i):

∑
(νi,ν̄i)

|vνi(ti)− vν̄i(ti)| ≤ 2nk
∑
k

|vk(ti)| ≤ 2nk

(
nk
∑
k

|vk(ti)|2
)1/2

≤ nk
(
nk + ‖Vnk‖2

)
using that the kinetic energy is decreasing for the pseudotrajectory. Hence∫

1Rn
(si,s̄i)

dx̂1 · · · dx̂nk−1 ≤
(
Cnk
µε

)nk−1 (
nk + ‖Vnk‖2

)nk−1
∫ Tnk

0

dtnk · · ·
∫ T1∧t2

0

dt1

≤
(
Cnk
µε

)nk−1 (
nk + ‖Vnk‖2

)nk−1 tnk−1−1

(nk−1 − 1)!

θnk−nk−1

(nk − nk−1)!

≤
(

6C

µε

)nk−1 (
nk + ‖Vnk‖2

)nk−1
tnk−1−1θnk−nk−1 ,

using the Stirling’s formula. For A,B > 0, x ∈ R,

(
A+ x2

)B
e−

x2

4 = BB
(
A+ x2

B
e−

A+x2

4B

)B
e
A
4 ≤

(
4B
e

)B
e
A
4 .

Thus for some constant C > 0,∫ (
nk + ‖Vnk‖2

)nk−1
e−
‖Vnk‖

2

2 dVnk ≤ (Cnk)nk−1

∫
e−
‖Vnk‖

2

4 dVnk ≤
(
2d/2Cnk

)nk−1

and ∫
1Rn

(si,s̄i)
M⊗nkdX2,nkdVnk ≤

∑
T>

∫ nk−1∏
i=1

1BT>,i
dx̂i M

⊗nkdVnk

≤ C
(
C

µe

)nk−1

tnk−1−1θnk−nk−1

∫ (
nk + ‖Vnk‖2

)nk−1
M⊗nkdVnk

≤ C
(
C

µe

)nk−1

tnk−1−1θnk−nk−1nnk−1
k ,

(where the constants C change from line to line).
Finally we sum on the 4nk−1 possible (si, s̄i)i and, dividing by the remaining (nk)!, this gives

the expected estimation. �
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Proof of (4.3). We begin as in the previous paragraph∣∣∣Φ0
n[h](Znk)Φ0

n[h](Znk−m+1,2nk−m)
∣∣∣

≤ ‖h‖
2

(nk!)2

∑
(si,s̄i)i≤nk−1

(s′i,s̄
′
i)i≤nk−1

1Rn
(si,s̄i)

(Znk)1Rn
(s′
i
,s̄′
i
)
(Znk−m+1,2nk−m).

We have to consider two pseudotrajectories Z(τ) := Z(τ, Znk) and Z′(τ) := Z(τ, Znk−m+1,2nk−m).
Note again that the right hand side is invariant under translation, hence we can fix x1 = 0.

We construct the clustering tree T> as follows. We merge the collision graphs of the first and
of the second pseudotrajectory. Then we look at edges one by one in temporal order, keeping only
those which do not create a cycle. In this way we construct a tree which connects all the vertices.
This leads to a graph with ordered edges. We finally remove then the non-clustering collisions and
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Figure 5. Example of construction of a clustering tree

obtain the clustering tree T> := (νi, ν̄i). As before, such trees induce a partition of{
Z2nk−m ∈ (Λ× Rd)2nk−m|Znk ∈ R

n
(si,s̄i)

, (Znk−m+1,2nk−m) ∈ Rn(s′i,s̄′i)
}
.

The rest of the proof is almost identical to the proof of (4.2). Fix the clustering tree, and perform
the following change of variables

X2,2nk−m 7→ (x̂1, · · · , x̂2nk−m−1), ∀i ∈ [1, 2nk −m− 1], x̂i := xνi − xν̄i .

Fix ti+1, the time of the (i + 1)-th collision and relative positions x̂1, · · · , x̂i−1. We define the
i-th collision sets as

BT>,i :=
{
x̂i

∣∣∣∃τ ∈ (0, Ti ∧ ti+1), |xνi(τ)− xν̄i(τ)| ≤ ε or |x′νi(τ)− x′ν̄i(τ)| ≤ ε
}
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where Ti = θ for the (nk − nk−1) first collisions, t else. By the same computation as above,∫
1Rn

(si,s̄i)
(Znk)1Rn

(s′
i
,s̄′
i
)
(Znk−m+1,2nk−m)M⊗(2nk−m)dX2,2nk−mdV2nk−m

≤
∑
T>

∫ 2nk−m−1∏
i=1

1BT>,i
dx̂i M

⊗(2nk−m)dV2nk−m

≤ C
(
C

µε

)2nk−m−1

tnk−1+m−1θnk−nk−1(2nk −m)2nk−m−1

≤ C (C)
2nk

µ2nk−m−1
ε

tnk−1+m−1θnk−nk−1n2nk−m−1
k .

We sum on all the possible parameters (si, s̄i)i and (s′i, s̄
′
i)i and get∫ ∣∣∣Φ0

n[h](Znk)Φ0
n[h](Znk−m+1,2nk−m)

∣∣∣M⊗(2nk−m)dX2,2nk−mdV2nk−m

≤ ‖h‖2
n2nk−m−1
k C2nk

(nk!)2µ2nk−m−1
ε

tnk−1+m−1θnk−nk−1

which provides the announced result, by Stirling formula. �

5. Estimation of non-pathological recollisions

The objective of this section is to bound

Grec,1
ε (t) :=

∑
1≤k≤K−1
1≤k′≤K′

∑
n1≤···≤nk
nj−nj−1≤2j

∑
n′′≥n′≥nk

Eε

µ−1/2
ε

∑
(i1,··· ,in′′ )

Φ>,k
′

n,n′,n′′ [h]
(
Zin′′ (ts)

)
ζ0
ε (g)1Υε

 .
Proposition 5.1. For ε small enough,∣∣Grec,1

ε (t)
∣∣ ≤ ‖g‖‖h‖εα/2(C ′t)2t/θ+2d+6.(5.1)

It is sufficient to prove the two following estimations:

Proposition 5.2. Fix k ∈ N, n := (n1, · · · , nk) ∈ Nk and (n′, n′′) ∈ N2 with n1 ≤ n2 ≤ · · · ≤ nk ≤
n′ ≤ n′′. Then

(5.2)
∫

sup
y∈Λ

∣∣Φ>,k′n,n′,n′′ [h](τyZn′′)
∣∣M⊗n′′dVn′′dX2,n′′ ≤ εα

‖h‖
µn
′′−1
ε

Cn
′′
θ(n′′−nk−2)+δ2tnk+2d+4,

and, for m ∈ [1, n′′],∫
sup
y∈Λ

∣∣Φ>,k′n,n′,n′′ [h](τyZn′′)Φ
>,k′

n,n′,n′′ [h](τyZn′′−m+1,2n′′−m)
∣∣M⊗(2n′′−m)dV2n′′−mdX2,2n′′−m

≤ εα ‖h‖2

(n′′)mµ2n′′−m−1
ε

Cn
′′
θ(n′′−nk−2)+δ2tnk+2d+4+m.

(5.3)
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Using these estimations and Corollary 3.3,∣∣∣∣∣Eε
[
µ−1/2
ε

∑
(i1,··· ,in′′ )

Φ>,k
′

n,n′,n′′ [h]
(
Zin′′ (ts)

)
ζ0
ε (g)1Υε

]∣∣∣∣∣
≤ ‖h‖‖g‖

εαCn′′θ(n′′−nk−2)+δ2tnk+2d+4 +

 n′′∑
m=1

εαCn
′′
θ(n′′−nk−2)+δ2tnk+2d+4+m

1/2


≤ ‖g‖‖h‖δεα/2Cn
′′
θ(n′′−nk−2)+/2t

n′′+nk
2 +2d+4

≤ ‖g‖‖h‖δεα/2(Ct)nk+2d+5(Ctθ)(n′′−nk−2)+/2.

Thus ∣∣Grec,1
ε (t)

∣∣ ≤ ∑
1≤k≤K−1
1≤k′≤K′

∑
n1≤···≤nk
nj−nj−1≤2j

∑
n′′≥n′≥nk

‖g‖‖h‖δεα/2(Ct)nk+2d+5(Ctθ)(n′′−nk−2)+/2

≤ ‖g‖‖h‖K ′δεα/2KK2

(Ct)2K+2d+5

≤ ‖g‖‖h‖εα/2(C ′t)2K+2d+6

(5.4)

using that K ′δ ≤ t.

Proof of (5.2). We recall that the pseudotrajectory development takes the form

Φ>,k
′

n,n′,n′′ [h](Zn′′) = Φ>,δn′,n′′ ◦ Φ0,k′δ
nk,n′

◦ Φ0
n[h](Zn′′)

=
1

n′′!

∑
((si,s̄i)i,(κj)j)

κj≤γ−1

∏
i

s̄i1R((si,s̄i)i,(κj)j)
h
(
Z(kθ + k′δ, ((si, s̄i)i, (κj)j), Zn′′)

)
.

Here R>((si,s̄i)i,(κj)j) is the set of initial configurations Zn′′ such that the pseudotrajectory has:

• n′ particles at time δ,
• nl particles at time k′δ + (k − l)θ,
• at least one recollision,
• no recollision after time δ
• with no pathological recollision (thanks to the asymmetric conditioning).

Lemma 5.3. There exist a constant α ∈ (0, 1) such that for any n, n′, n′′, k′ and ((si, s̄i)i, (κj)j),∫
1R((si,s̄i),(κj)j)

M⊗n
′′
dX2,n′′dVn′′ ≤ C ′

(
C ′

µε

)n′′−1

(n′′)n
′′
δ2θ(n′′−nk−2)+tnk+2d+4εα

Proof. We may define the clustering tree T> as before, by looking at collisions in temporal order
and keeping only the clustering collisions. However, this will not be sufficient to characterize the
initial data.

Let (q, q̄) (with q < q̄) be the first two particles having a non-clustering collision, τcycle the time
of this collision and c ∈ [1, n′′−1] such that τcycle lies between the times of the c-th and the (c+1)-th
clustering collision. The parameters (T>, (q, q̄, c)) provide a partition of the set of initial data.

Considering the change of variables

∀i ∈ [1, n′′ − 1], x̂i := xνi − xν̄i , X2,n′′ 7→ (x̂1, · · · , x̂n′′−1)
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with T> =: (νi, ν̄i)i≤n′′−1, we can construct as in the previous section a sequence of sets BiT>,(q,q̄,c)
depending only on Vn′′ and x̂1, · · · , x̂i−1 which condition the relative position x̂i. The only difference
is that the construction has to take into account the addition of one cycle. We define in the following
(Ti)i by Ti = δ if i is smaller than n′′ − n′, θ if i is between n′′ − n′ + 1 and n′′ − nk and t else (Ti
“counts” the number of clustering collisions in [0, δ], [δ, k′δ] and [k′δ, k′δ + kθ]).
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Figure 6. Example of construction of a clustering tree. Here (q, q̄, c) = (2, 4, 4).

We need to characterize one particular collision in T>, which conditions the appearance of the
non-clustering collision, and for which we have to adapt the definition of BiT>,(q,q̄,c).

Definition 5.1. We call parent p of a group of particles (qk)k at time τ the p-th edge with the
largest p such that one of the particles (qk)k is deflected at τp ≤ τ . If such a parent does not exist,
then we set τp := 0.

We define the connector k of two particles (q, q̄) the index of the first edge, going backwards
from τ to zero, realizing a connected path between q and q̄.

The tutor j of two particles (q, q̄) at time τ is the largest j with tj ≤ τ such that j is either the
parent at time τ or the connector of (q, q̄).

1 2 3 4 5
0

τ1

τ2

τ3

τ4

τ5

Figure 7. In this pseudotrajectory, the parent of particles (2, 5) at time τ5 is the
collision between 1 and 2 at time τ1 and the connector the collision between 3 and
4 at time τ2.
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Let j be the tutor of (q, q̄) before τcycle. We define

BjT>,(q,q̄,c) :=
{
x̂j

∣∣∣∃τ ∈ (0, Tj ∧ tj+1), |xνj (τ)− xν̄j (τ)| ≤ ε

and the j−th collision is the tutor of the cycle
}
.

Note that, by construction, after the clustering time τj particles q and q̄ do not change their
velocities.

Proposition 5.4. Assume that d ≥ 3. Then, denoting by wq, wq̄, wqj , wq̄j the velocities of q, q̄, qj , q̄j
at t+j−1 (which are the same than at time t−j ), and if the tutor j is the parent of (q, q̄), one has

(5.5)
∫
1Bj

T>,(q,q̄,c)

dx̂j ≤
C

µε
(Vt)d ×

(
Vε| log ε|1q 6=q̄j
|wq − wq̄j |

+
Vε| log ε|1q̄ 6=q̄j
|wq̄ − wq̄j |

+
Vt
µε

)
;

otherwise if the tutor is a connector but not a parent,
(5.6)∫

1Bj
T>,(q,q̄,c)

dx̂j ≤
C

µε
(Vθ)d+1 ×

∑
ζ

1sin(wq−wq̄,ζ)≤ε + (Vθ)d min
(

1,
ε1(q,q̄)6=(qj ,q̄j)

sin
(
wq − wq̄, wqj − wq̄j

))


where the sum runs over ζ ∈ Zd \ {0} contained in the ball of radius Vθ.

The above proposition uses the tutor to gain some smallness from the strong geometric con-
straint. However, the estimates in (5.5)-(5.6) lead to singularities in the relative velocities. Those
singularities have to be integrated out either by using available parents (if any) or by using the
Gaussian measure of the velocity distribution at time 0. The following proposition summarises the
different possibilities.

Proposition 5.5. (i) Let q 6= q̄ be two particles of velocities wq, wq̄ with parent `. Let ζ ∈ Zd \{0}.
Then one has that

(5.7)
∫ (

Vε| log ε|
|wq − wq̄j |

+ 1sin(wq−wq̄j ,ζ)≤ε

)
1B`

T>,(q,q̄,c)
dx̂` ≤

C

µε
Vε| log ε|

(
δ1`=1 + t1` 6=1

)
.

(ii) Let q, q̄, qj , q̄j be particles with velocities wq, wq̄, wqj , wq̄j and parent ` (say deflecting q), such
that (q, qj) and (q̄, q̄j) belong to different connected components of the dynamical graph.∫

min

(
1,

ε1{q,q̄}6={qj ,q̄j}

sin
(
wq − wq̄, wqj − wq̄j

))1B`
T>,(q,q̄,c)

dx̂` ≤
C

µε
Vε| log ε| (δ1`=1 + t1` 6=1)

×
(

1 +
θV1(q,qj) encounter at τ`

|uq + uqj − (wq̄j + wq̄)|
+
tV1q=qj1q̄ 6=q̄j
|wq̄ − wq̄j |

)
,

(5.8)

denoting by u the pre-collisional velocities.
(iii) Let q, q̄, qj , q̄j be particles with velocities wq, wq̄, wqj , wq̄j such that (q), (qj) and (q̄, q̄j) belong
to different connected components of the dynamical graph. Let ` be the first parent of q, q̄, qj , q̄j
deflecting only one particle of the group.

(5.9)
∫

Vε| log ε|
|wq + wqj − (wq̄j + wq̄)|

1B`
T>,(q,q̄,c)

dx̂` ≤
C

µε
Vε| log ε|

(
δ1`=1 + t1 6̀=1

)
.
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(iv) For q 6= q̄, ζ ∈ Zd \ {0}

(5.10)

∫
M(wq)M(wqj )M(wq̄)M(wq̄j )

( Vε| log ε|
|wq − wq̄|

+
Vε| log ε|

|wq + wqj − wq̄ − wq̄j |
+ 1sin(wq−wq̄,ζ)≤ε

+ min
(

1,
ε1(q,q̄)6=(qj ,q̄j)

sin
(
wq − wq̄, wqj − wq̄j

)))dwqdwqjdwq̄dwq̄j ≤ C Vε| log ε| .

Propositions 5.4 and 5.5 have been proved in [7].
We can then integrate and sum on the (x̂1, · · · , x̂n′′−1) and (T>, (q, q̄, c)) and give a bound on∑

(q,q̄,c)

∑
T>

∫
dx̂11B1

T>,(q,q̄,c)

∫
dx̂2 · · ·

∫
dx̂n′′−11Bn

′′−1

T>,(q,q̄,c)

.

We integrate the constraints iteratively using successively Propositions 5.4 and 5.5: one obtains∫
1R((si,s̄i),(κj)j)

M⊗n
′′
dX2,n′′dVn′′

≤
(
C

µε

)n′′−1

(n′′)2n′′+2 δmax(n′′−n′,1)

max(n′′ − n′, 1)!

θ(n′−nk−1)+

(n′ − nk − 1)+!

tnk

nk!
(Vt)2d+4ε| log ε|

≤ C ′
(
C ′

µε

)n′′−1

(n′′)n
′′
δ2θ(n′′−nk−2)+tnk+2d+4εα

using that V := | log ε|. �

We obtain the expected result by summing on the

((si, s̄i)i, (κj)j) ∈ {±1}2n
′′−1 × [0, γ − 1]n

′′
,

and dividing by n′′!. �

Proof of (5.3). We use first the same bound of the previous section∣∣∣Φ>,k′n,n′,n′′ [h](Zn′′)Φ
>,k′

n,n′,n′′ [h](Zn′′−m+1,2n′′−m)
∣∣∣

≤ ‖h‖
2

(n′′!)2

∑
((si,s̄i)i,(κj)j)

κj≤γ−1

∑
((s′i,s̄

′
i)i,(κ

′
j)j)

κ′j≤γ−1

1R((si,s̄i)i,(κj)j)
(Zn′′)1R((s′i,s̄

′
i)i,(κ

′
j)j)

(Zn′′−m+1,2n′′−m).

Note that the formula is invariant under translation. We can then fix x1 = 0 and integrate with
respect the other variables.

Fix ((si, s̄i)i, (κj)j) and ((s′i, s̄
′
i)i, (κ

′
j)j). There are two pseudotrajectories. We construct as

in the proof of (5.2) the clustering tree T>a and the recollision parameters (q, q̄, c) for the first
recollision. We construct next the clustering graph T>b of Z′(τ) by induction. Let (νi, ν̄i)i≤I be the
edges of the collision graph of Z′(τ), with temporal order. We begin by T0 = ∅. A the i-th step, we
add (νi, ν̄i) to Ti−1 only if it does not create a cycle in the graph T>a ∪Ti−1 ∪{(νi, ν̄i)}. At the end
we have constructed the graph T>b := TI and T>a ∪T>b is a simply connected graph which connects
all the particles. Note that T>b has n′′ −m edges.

We denote T>a := (νi, ν̄i)i∈[1,n′′−1] and T>b := (νi, ν̄i)i∈[n′′,2n′′−m−1] (with νi < ν̄i) and we
perform the change of variables

∀i ∈ [1, 2n′′ −m− 1], x̂i := xνi − xν̄i , X2,2n′′−m 7→ (x̂1, · · · , x̂2n′′−m−1).
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Figure 8. Example of construction of the clustering trees

Fixing (x̂1, · · · , x̂n′′−1), we construct first a sequence of clustering sets Bi
T>b

as in the proof of
(4.3). Then we can reproduce the same strategy and∑

T>b

∫
Bn
′′

T>
b

dx̂n′′ · · ·
∫
B2n′′−m−1

T>
b

dx̂2n′′−m−1

≤
(
C ′(2n′′ −m)

µε

)n′′−m (
‖V2n′′−m‖2 + 2n′′ −m

)n′′−m tn
′′−m

(n′′ −m)!
.

Secondly, proceeding as in the proof of (5.2), we construct a sequence of clustering sets Bi
T>a ,(q,q̄,c)

(for i ≤ n′′ − 1) of relative positions x̂i. Reproducing the same estimations,∫
1R((si,s̄i)i,(κj)j)

(Zn′′)1R((s′i,s̄
′
i)i,(κ

′
j)j)

(Zn′′−m+1,2n′′−m)M⊗(n′′−m)dX2,2n′′−mdV2n′′−m

≤
∑

(T>a ,T
>
b )

(q,q̄,c)

∫
M⊗(n′′−m)dV2n′′−m

×
∫
B1
T>,(q,q̄,c)

dx̂1 · · ·
∫
Bn
′′−1

T>,(q,q̄,c)

dx̂n′′−1

∫
Bn
′′

T>
b

dx̂n′′ · · ·
∫
B2n′′−m−1

T>
b

dx̂2n′′−m−1

≤
(
C

µε

)2n′′−m−1

(2n′′ −m)4n′′−2m δmax(n′′−n′,1)

max(n′′ − n′, 1)!

θ(n′−nk−1)+

(n′ − nk − 1)+!

tnk+m

nk!(n′′ −m)!

×(Vt)2d+4ε| log ε|

≤ C ′
(
C ′

µε

)2n′′−m−1

(2n′′ −m)2n′′−m−1δ2θ(n′′−nk−2)+tnk+m+2d+4εα

where we use that for (d1, · · · , dk) ∈ Nk,

1

d1! · · · dk!
≤ kd1+···+dk

(d1 + · · ·+ dk)!

and the Stirling formula. Summing on the (4γ)2(n′′−1) possible ((si, s̄i)i, (κj)j) and ((s′i, s̄
′
i)i, (κ

′
j)j)

and then dividing by (n′′)!2, we obtain the expected result. �
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6. Estimation of pathological recollisions

In the present section we discuss Grec,2
ε (t) defined by

∑
1≤k≤K−1
1≤k′≤K′

∑
n1≤···≤nk
nj−nj−1≤2j

 ∑
n′≥nk

Eε

µ−1/2
ε

∑
(i1,··· ,in′ )

Φ0,k′

n,n′ [h]
(
Zin′ (ts + δ)

)
Xin′

(
ZN (ts)

)
ζ0
ε (g)1Υε



−
∑

n′′≥n′≥nk

Eε

µ−1/2
ε

∑
(i1,··· ,in′′ )

Φγ,δn′←n′′
[
Φ0,k′

n,n′ [h]
] (

Zin′′ (ts)
)
Xin′

(
ZN (ts)

)
ζ0
ε (g)1Υε

 .

We will prove the following bound:

Proposition 6.1. For ε > 0 small enough, we have

(6.1)
∣∣∣Grec,2

ε (t)
∣∣∣ ≤ C‖h‖‖g‖(K2K

2

(Ct)2K+1
)
εα/2.

6.1. Finite-parameter expansion. In the sums∑
(i1,··· ,in′ )

Φ0,k′

n,n′ [h]
(
Zin′ (ts + δ)

)
Xin′

(
ZN (ts)

and ∑
(i1,··· ,in′′ )

Φγn′←n′′
[
Φ0,k′

n,n′ [h]
] (

Zin′′ (ts)
)
Xin′

(
ZN (ts)

)
,

the indicator function Xin′ (ZN ) depends on all the particles of the system. In addition, in the first
sum, the term Φ0,k′

n,n′ [h]
(
Zin′ (ts + δ)

)
depends on ZN (ts) the position of all the particles at time

ts. In order to apply usual L2 estimates, we first decompose these terms into a sum of functions
evaluated on finitely many parameters: we want to construct two families of functions (Φk

′

n,n′,p,l)p,l

and (Φk
′

n,n′,n′′,p)p such that for almost ZN ∈ Dε,∑
(i1,··· ,in′ )

Φ0,k′

n,n′ [h]
(
Zin′ (ts + δ)

)
Xin′

(
ZN (ts)

)
=

∑
n′≤p≤l

∑
(i1,··· ,il)

Φk
′

n,n′,p,l(Zil(ts)),∑
(i1,··· ,in′′ )

Φγn′←n′′
[
Φ0,k′

n,n′ [h]
] (

Zin′′ (ts)
)
Xin′

(
ZN (ts)

)
=
∑
n′′≤p

∑
(i1,··· ,ip)

Φk
′

n,n′,n′′,p(Zip(ts)).

6.1.1. Decomposition of X(i1,··· ,in′ )(ZN ). We begin by expanding X(i1,··· ,in′ )(ZN ) as a sum of func-
tions of a finite number of particles: we can decompose it formally as

X(i1,··· ,in)(ZN ) = 1−
∏

$⊂{1,··· ,N}
$∩{i1,··· ,in}6=∅

(
1− χ(Z$)

)

= −
∑
p≥n

∑
(in+1,··· ,ip)

1

(p− n)!

∑
p≥0

∑
$̄∈Qp

[1,n],[n+1,p]

p∏
j=1

[
−χ
(
Zi$j

)](6.2)
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where the function χ has been introduced in Definition 2.3, and we define, for ω1 and ω2 two subsets
of N with empty intersection,

Qp
ω1,ω2

:=

($1, · · · , $p)
∣∣∣∀i, $i ⊂ ω1 ∪ ω2, $i ∩ ω1 6= ∅ ; ω2 ⊂

p⋃
j=1

$j ; ∀i 6= j, $i 6= $j

 .

Defining

(6.3) Xn,p
(
Zip
)

:= − 1

(p− n)!

∑
p≥0

∑
$̄∈Qp

[1,n],[n+1,p]

p∏
j=1

[
−χ
(
Zi$j

)]
,

we have for any bounded and measurable function hn and any times τ1, τ2 ∈ R∑
(i1,··· ,in)

hn(Zin(τ1))Xin(ZN ) :=
∑
p≥n

∑
(i1,··· ,ip)

hn
(
Zin(τ1)

)
Xn,p

(
Zip(τ2)

)
.

Any family ($1, · · · , $p) ∈ Qp
[1,n],[n+1,p], has all its terms disjoint. Thus p is smaller than the

cardinality of {$, $ ⊂ {1, · · · , p}}, 2p. Thus |Xn,p| is bounded by 22p .
The preceding equality holds on {N ≤ N} for every N ∈ N and the number of particles is

bounded on Υε. Hence the decomposition is valid on Υε.
Applying the decomposition to the formula for Grec,2

ε (t) we obtain: for any ZN ∈ Dε,

(6.4)
∑

(i1,··· ,in′′ )

Φγn′←n′′
[
Φ0,k′

n,n′ [h]
] (

Zin′′ (ts)
)
Xin′

(
ZN (ts)

)
=
∑
p≥n′′

∑
(i1,··· ,ip)

Φγn′←n′′
[
Φ0,k′

n,n′ [h]
] (

Zin′′ (ts)
)
Xn′,p(Zi[1,n′]∪[n′′+1,p]

(ts))

and

(6.5)
∑

(i1,··· ,in′ )

Φ0,k′

n,n′ [h]
(
Zin′ (ts + δ)

)
Xin′

(
ZN (ts)

)
=
∑
p≥n′

∑
(i1,··· ,ip)

Φ0,k′

n,n′ [h]
(
Zin′ (ts + δ)

)
Xn′,p(Zip(ts)).

6.1.2. Dynamical cluster development. In the second member of Grec,2
ε we look at functions at time

ts and ts − δ. To come back to one single evaluation time, we have to do some pseudotrajectory
development. But tree pseudotrajectories are not handable, precisely because of possible many
local recollision. Thus, we introduce a different kind of pseudotrajectory development, called here
“dynamical cluster development” (see [23], from which we take inspiration).

We denote by Zλ(τ) = (Xλ(τ),Vλ(τ)) the trajectory of the particles λ ⊂ N in a realization of
the hard sphere dynamics associated to the Hamiltonian

Hλ(Zλ) :=
∑
q∈λ

|vq|2

2
+
∑
q,q′∈λ
q 6=q′

V
(
xq − xq′

ε

)

-isolated of the other particles- with initial data Zλ. For any subset λ′ ⊂ λ, Zλλ′(τ) is the trajectory
of particles λ′ in Zλ(τ).
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We say that Zλ(τ) forms a “dynamical cluster” if the collision graph on the time interval [0, δ] is
connected, and we denote ϕ|λ|(Zλ) the indicator function that the trajectory Zλ(τ) forms a cluster.
In the same way, for λ′ ⊂ λ, Zλ(τ) form a λ′-cluster if in the collision of Zλ(τ), all the particles are
in the same connected components than one of the particles of λ′. The function ϕλ

′

|λ|(Zλ) is equal
to 1 if Zλ(τ) is a λ′-cluster, 0 else.

We say that trajectories Zλ(τ) and Zλ
′
(τ) (with λ∩λ′ = ∅) have an overlap if there exists a couple

of particle (i, i′) ∈ λ× λ′ and some time τ ∈ [0, δ], such that |xλi (τ)− xλ
′

j (τ)| ≤ ε. Then we denote
λ
◦∼ λ′. We can decompose the initial data into dynamical clusters partition (λ1, · · · , λl): each

λ2, · · · , λl is a dynamical cluster, λ1 is a im-cluster and there is no interaction between particles of
two distinct λi. For any ZN ∈ Dε,

hm(Zim(δ)) =

N∑
l=1

∑
im⊂λ1

(λ2,··· ,λl)∈Pl−1
λc1

hm(Zim(δ))ϕ
im
λ1

(Zλ1
)

l∏
i=2

ϕ|λi|(Zλi)
∏

1≤i<j≤l

(
1− 1

λi
◦∼λj

)
︸ ︷︷ ︸ .

the indicator function that two
different clusters do not overlap

where we have denoted Prω the set of the unordered partitions (ρ1, · · · , ρr) of the set ω.
For (Zλ1 , · · · , Zλl

) ∈
∏l
i=1D

|λi|
ε initial data, we look at the indicator function that for any i 6= j,

Zλi(τ) and Zλj (τ) have no overlap. As in Section 3, we can expand the function:

∏
1≤i<j≤l

(
1− 1

λi
◦∼λj

)
=
∑
ω⊂[1,l]

1∈ω

∑
C∈C(ω)

∏
(i,j)∈E(C)

−1
λi
◦∼λj︸ ︷︷ ︸

:=ψ|ω|(Zλ1
,Zλω(2)

,··· ,Zλω(|ω|) )

∏
(i,j)∈(ωc)2

i 6=j

(
1− 1

λi
◦∼λj

)
.

(6.6)

We have defined (ψl)l the cumulants of the overlap indicator. We make a partition of Dε
depending on the way particles interact on the time interval [0, δ]: fixing N ∈ N and im,

hm(Zim(δ))

=

N∑
l=1

∑
im⊂λ1

(λ2,··· ,λl)∈Pl−1
λc1

hm(Zim(δ))ϕ
im
λ1

(Zλ1
)

l∏
i=2

ϕ|λi|(Zλi)
∑
ω⊂[1,l]

1∈ω

ψ|ω|(Zλω )
∏

(i,j)∈(ωc)2

i 6=j

(
1− 1

λi
◦∼λj

)
.

We make the change of variable

(l, (λ1, · · · , λl) , ω) 7→
(
ρ, l1,

(
λ̄1, · · · , λ̄l1

)
, l2,

(
λ̃1, · · · , λ̃l2

))
where

ρ :=
⋃
i∈ω

λi, l2 := |ω|, l1 := l− |ω|,
(
λ̄1, · · · , λ̄l1

)
:= (λj)j∈ωc and

(
λ̃1, · · · , λ̃l2

)
:= (λj)j∈ω .
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The set ρ is the set of particles which interact (in the dynamics or via an overlap) in im. Thus

hm(Zim(δ)) =
∑
ρ⊃im

|ρ|∑
l1=1

∑
im⊂λ̄1⊂ρ

(λ̄2,··· ,λ̄l1
)∈Pl1−1

λ̄c1

hm

(
Zλ̄1
im

(δ)
)
ϕ
im
λ̄1

(
Zλ̄1

) l1∏
i=2

ϕ|λ̄i|
(
Zλ̄i
)
ψl1

(
Zλ̄1

, · · · ,Zλ̄l1

)

×
|ρc|∑
l2=1

∑
(λ̃1,··· ,λ̃l2

)∈Pl2
ρc

l2∏
i=1

ϕ|λ̃i|(Zλ̃i)
∏

(i,j)∈(ωc)2

i 6=j

(
1− 1

λ̃i
◦∼λ̃j

)
.

The second line is the sum over all possible partitions (λ̃1, · · · , λ̃l2) of ρc of the indicator function
that they are effectively the dynamical cluster of the initial data. Hence it is equal to one. Thus
defining the n-th dynamical cumulant as

fm←n[hm](Zn) :=
1

(n−m)!

n∑
l=1

∑
λ1⊂[1,n]
[1,m]⊂λ1

∑
(λ2,··· ,λl)

∈Pl−1
λc1

hm(Zλ1

[1,m](δ))ψl(Zλ1
, · · · , Zλl

)

×ϕ[1,m]
|λ1| (Zλ1

)

l∏
i=2

ϕ|λi|(Zλi),

(6.7)

we obtain the dynamical cluster expansion:

Theorem 6.2. For almost all ZN ∈ Dε we have

(6.8) hm
(
(Zim(δ)

)
=
∑
n≥m

∑
(im+1,··· ,in)

fm←n[hm]
(
Zin(0)

)
.

δ

0

i
m

λ2

λ1

λ3 λ4

collision

overlap

Figure 9. Example of trajectory in a dynamical cumulant. We want to follow the
black particles.

Applying this to (6.4), for any ZN ∈ Υε,∑
(i1,··· ,in′ )

Φ0,k′

n,n′ [h]
(
Zin′ (ts + δ)

)
Xin′

(
ZN (ts)

)
(6.9)

=
∑
p≥n′

∑
(i1,··· ,i)

Φ0,k′

n,n′ [h]⊗ 1⊗p−n
′
(
Zip(ts + δ)

)
Xn′,p(Zip(ts))

=
∑

l≥p≥n′

∑
(i1,··· ,il)

fp←l
[
Φ0,k′

n,n′ [h]⊗ 1⊗p−n
′
] (

Zil(ts)
)
Xn′,p(Zip(ts))

where Φ0,k′

n,n′ ⊗ 1⊗(p−n′) is the function Zp 7→ Φ0,k′

n,n′(Z[1,n′]).
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Finally we symmetrize these two functions:

(6.10) Φk
′

n,n′,p,l(Zl) :=
1

l!

∑
σ∈Sl

fp←l
[
Φ0,k′

n,n′ [h]⊗ 1⊗p−n
′
] (
Zσ([1,l])

)
Xn′,p(Zσ([1,p]))

(6.11) Φk
′

n,n′,n′′,p(Zp) :=
1

p!

∑
σ∈Sp

Φγn′←n′′
[
Φ0,k′

n,n′ [h]
] (
Zσ([1,n′′])

)
Xn′,p(Zσ([1,n′]∪[n′′+1,p])) .

We have thus rewritten Grec,2
ε (t) as a function evaluated on finitely many variables:

Grec,2
ε (t) =

∑
1≤k≤K−1
1≤k′≤K′

∑
n1≤···≤nk
nj−nj−1≤2j

∑
n′≥0

(∑
l≥0
p≥0

Eε

[
µ−1/2
ε

∑
(i1,··· ,il)

Φk
′

n,n′,p,l(Zil(ts)) ζ
0
ε (g)1Υε

]

−
∑
n′′≥0
p≥0

Eε

[
µ−1/2
ε

∑
(i1,··· ,ip)

Φk
′

n,n′,n′′,p(Zip(ts)) ζ
0
ε (g)1Υε

])
.

(6.12)

6.2. Geometrical estimation of local recollisions. The aim of this part is to prove the following
bound on Φk

′

n,n′,n′′,p and Φk
′

n,n′,p,l:

Proposition 6.3. Fix n1 ≤ · · · ≤ nk ≤ n′ ≤ n′′ < p. For m ∈ {1, · · · p} we have

(6.13)
∫
x1=0

sup
y∈Λ

∣∣Φk′n,n′,n′′,p(τyZp)∣∣M⊗pdX2,pdVp ≤
‖h‖
µp−1
ε

Cpδ2εαθ(p−nk−2)+tnk−1,

∫
x1=0

sup
y∈Λ

∣∣Φk′n,n′,n′′,p(τyZp)Φk′n,n′,n′′,p(τyZp+1−m,2p−m)
∣∣M⊗(2p−m)dX2,2p−mdVp−m

≤ ‖h‖2

pmµ2p−m−1
ε

Cpδ2εαθ(p−nk−2)+tnk−1+p−m.

(6.14)

In the same way if we fix n1 ≤ · · · ≤ nk ≤ n′ ≤ n′′ < p ≤ l, for m ∈ {1, · · · l} we have

(6.15)
∫
x1=0

sup
y∈Λ

∣∣Φk′n,n′,p,l(τyZl)∣∣M⊗ldXl−1dVl ≤
‖h‖
µl−1
ε

Clδ2εαθ(l−nk−2)+tnk−1,

∫
x1=0

sup
y∈Λ

∣∣Φk′n,n′,p,l(τyZp)Φk′n,n′,p,l(τyZl+1−m,2l−m)
∣∣M⊗(2l−m)dX2,2l−mdV2l−m

≤ ‖h‖2

lmµ2l−m−1
ε

Clδ2εαθ(l−nk−2)+tnk−1+l−m.

(6.16)

From this and using the quasi-orthogonality estimates of Corollary 3.3, we obtain:

(6.17)

∣∣∣∣∣Eε
[
µ−1/2
ε

∑
ip

Φk
′

n,n′,n′′,p(Zip(ts)) ζ
0
ε (g)1Υε

]∣∣∣∣∣ ≤ ‖h‖‖g‖Cp(δ2εαθ(p−nk−2)+tnk−1ε
1
2

+
(
pδ2εαθ(p−nk−2)+tnk−1+p

) 1
2
)

≤ δεα/2‖h‖ ‖g‖Cp(θt)(p−nk−2)+/2tnk
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and in the same way

(6.18)

∣∣∣∣∣Eε
[
µ−1/2
ε

∑
il

Φk
′

n,n′,p,l(Zi(ts)) ζ
0
ε (g)1Υε

]∣∣∣∣∣ ≤ δεα/2‖h‖‖g‖Cl(θt)(l−nk−2)+/2tnk .

Because θ tends to 0 as ε goes to zero, for ε small enough, the two previous series are summable
with respect to respectively (l, n′′, n′) and (l, p, n′). We recall that K ′ = θ/δ and we sum on k, n
and k′ to obtain that there exists a positive constant C depending only on the dimension and γ
such that ∣∣∣Grec,2

ε (t)
∣∣∣ ≤ Cδεα/2‖h‖‖g‖θ

δ

K∑
k=1

∑
n1≤···≤nk
nj−nj−1≤2j

(Ct)nk ≤ Cεα/2‖h‖‖g‖
K∑
k=1

2k
2

(Ct)2k+1

≤ C‖h‖‖g‖
(
K2K

2

(Ct)2K+1
)
εα/2

(6.19)

which concludes the proof of (6.1).
We have to prove four slightly different versions of the same inequality. We will do so in detail

only for the first one, then we will explain how to adapt the others.
The proofs of (6.13), (6.14), (6.15) and (6.16) are very similar. We give only the full details for

the proof of (6.13), and we only highlight the main differences for the other ones.

Proof of (6.13). We recall that

Φk
′

n,n′,n′′,p(Zp) :=
1

p!

∑
σ∈Sp

Φγn′←n′′
[
Φ0,k′

n,n′ [h]
] (
Zσ([1,n′′])

)
Xn′,p(Zσ([1,n′]∪[n′′+1,p])).

In Φγn′←n′′
[
Φk
′

n,n′ [h]
]

(Zn′′)Xn′,p(Z[1,n′]∪[n′′+1,p]) we see three sets of indices:

• [1, n′] the set of particles in "final" tree pseudotrajectories development,
• [n′ + 1, n′′] the particles added in the local tree development,
• [n′′ + 1, p] the particles which produce local recollisions.

Any permutation σ which sends [1, n′], [n′ + 1, n′′] and [n′′ + 1, p] onto themselves stabilizes
Φγn′←n′′

[
Φk
′

n,n′ [h]
]

(Zn′′)Xn′,p(Z[1,n′]∪[n′′+1,p]) and

Φk
′

n,n′,n′′,p(Zp) =
n′! (n′′ − n′)! (p− n′′)!

p!

∑
ω∈P3

p

|ω1|=n′
|ω2|=p−n′′

Φγn′←n′′
[
Φk
′

n,n′

]
(Zω1

, Zω3
)Xn′,p(Zω1

, Zω2
).

Let us develop Φγn′←n′′
[
Φk
′

n,n′ [h]
]
and Xn′,l. For ((si, s̄i), (κi)) a set of recollision parameters, we

denote R((si,s̄i),(κj)) ⊂ Dn
′′

ε the set of initial data such that there is

• n′ particles at time δ,
• nk particles at time (k′ + 1)δ and
• nj particles at time (k′ + 1)δ + (k − j)θ.
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Then

Φk
′

n,n′,n′′,p(Zp) =
1

p!

∑
((si,s̄i),(κj))

∑
ω1tω2tω3=[p]
|ω1|=n′
|ω2|=p−n′′

∑
p≥1

∑
$∈Qp

ω1,ω2

−1R((si,s̄i),(κj))
(Zω1∪ω3)

× h (Zω1∪ω3
(t− ts))

n′′−1∏
i=1

s̄i

p∏
i=1

(−χ(Z$i))

(6.20)

where
Zω1∪ω3(t− ts) := Z(t− ts, ((si, s̄i), (κj)), Zω1∪ω3)

and we have∣∣∣Φk′n,n′,n′′,p∣∣∣(Zp) ≤ ‖h‖p! ∑
((si,s̄i),(κj))

∑
ω1tω2tω3=[p]
|ω1|=n′
|ω2|=p−n′′

∑
p≥1

∑
$∈Qp

ω1,ω2

1R((si,s̄i),(κj))
(Zω1∪ω3

)

×
p∏
i=1

χ(Z$i).
(6.21)

Figure 10 gives a representation of the trajectory of each particle.
Note that the right hand side is invariant under translation. Thus one can fix x1 = 0 and

integrate with respect to the other variable.
We need to count the set of collision parameters: |{(si, s̄i)i}| ≤ 4p and |{(ω1, ω2, ω3)} ≤ 3p.

Using that the pseudotrajectory has no recollision after time δ, and that particle can only meet
γ − 1 particles before δ, one can bound {(κj)j}| ≤ (γ − 1)p. The problem is the set of parameters
Qp
ω1,ω2

, which is huge: |
⋃

pQp
ω1,ω2

| . 22p . We need now the global conditioning in order to control
the number of acceptable $.

Given Zp, we introduce ρ := (ρ1, · · · , ρr) the γδV-distance partition: consider the graph G with
vertices [1, p] with (i, j) ∈ E(G) if and only if |xi − xj | ≤ γδV (we recall that γ ∈ N is a constant
fixed in Section 2.3)). The ρi are the connected components of G. We define Dρε ⊂ Dpε as the set
such that ρ is the distance partition, and the

(
Dρε
)
ρ
form a partition of Dpε .

Inside each cluster ρi, a particle can only interact with the other particles of ρi as the kinetic
energy ‖Vρi(τ)‖2 is bounded by V2. Hence the system ρi is isolated on [0, δ] and for any $ ⊂ ω1∪ω3,
if particles in Zω can have a pseudotrajectory with connected collision graph (and a local recollision),
then there exists some ρi containing ω.

We can perform now the following parametrisation: for any ρi, we consider
• ωi := (ωi1, ω

i
2, ω

i
3) the partition of ρi defined by ωij := ωj ∩ ρi,

• $i := {$j such that $j ⊂ ρi},
• pi := (ωi, $i), and P(ρi) the set of possible pi.

Because ρi is of size at most γ, there exists a constant Cγ depending only on γ such that |P(ρi)| ≤
Cγ . Hence, the set of parameter

∏
iPi is of size smaller than Cr

γ ≤ Cpγ .
Any particle in ω2 or ω3 has to be close to a particle in ω1 because they are involved in some

pseudotrajectory on [0, δ] involving a particle in ω1. So for any ρi, ωi1 is not empty. Finally note
that if we fix ρ, the map (ω,$) 7→ (pi)i is onto.

We have now the following bound∣∣Φk′n,n′,n′′,p(Zp)∣∣ ≤ ‖h‖p!
p∑

r=1

∑
ρ∈Pr

p

∑
((si,s̄i),(κj))
p∈

∏
i
P(ρi)

1Rρ,p
((si,s̄i),(κi)

(Zp)

r∏
i=1

∆pi(Zρi)
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where the function

∆pi(Zρi) := 1Zρi form a
distance cluster

|$i|∏
j=1

χ(Z$ij )

controls the local cluster, and the relative position between clusters is controlled by

Rρ,p((si,s̄i),(κi))
:=
{
Zp ∈ D

ρ
ε , Zω1∪ω3 ∈ R((si,s̄i),(κi)

}
.

The main idea is to freeze the relative position of each particle inside each ρi, and perform the
change of variable

X2,p → ((xmin ρi)2≤i≤r, (X̄i)i≤r), X̄i := (xj − xmin ρi)j∈ρi .

Then we use the condition Rρ,p((si,s̄i),(κi)
to integrate the (xmin ρi)i, using the same method than in

[6] to control the first condition. The sum on (X̄i)i will be controlled later, using the condition
∆pi(Zρi).

Lemma 6.4. Fixing p, ρ, ((si, s̄i)i, κj) and the coordinates Vp and (X̄i)i≤r, one obtains the following
bound:

(6.22)
∫
1Rρ,p

((si,s̄i),(κi)

e−
1
4‖Vp‖

2

dxmin ρ2
· · · dx̂min ρr ≤

Cptnk∧r−1θ(r−nk)+

µr−1
ε

.

Proof. We define now the clustering tree of the distance cluster: For a pseudotrajectory Zω1∪ω3(τ),
consider its collision graph G[0,t−ts]

ω1∪ω3
. Then, the graph G is constructed by identifying in G[0,t−ts]

ω1∪ω3
the

particles in a same cluster ρi. Finally, we define the clustering trees T> := (νi, ν̄i)1≤i≤r−1 where
the i-th clustering collision in G happens between cluster ρνi and ρν̄i .

We construct now a different representation of collision graphs. Let L0 be equal to {{1}, · · · , {r}}
and construct the Li and (ν(i), ν̄(i)) sequentially. Suppose that Li−1 = (c1, · · · , cl), the (cj) forming
a partition of [1, r]. The i-th collision happens between cluster νi ∈ ca and ν̄i ∈ cb. Then:

• Li :=
(
Li−1 \ {ca, cb}

)
∪ {ca ∪ cb},

• {ν(i), ν̄(i)} := {ca, cb} with max ν(i) < max ν̄(i).
The (ν(i), ν̄(i)) define a partition of T >r (the set of ordered trees on [1, r]).

We apply then the following change of variables:
∀i ∈ {1, · · · , r− 1}, x̂i := xmin ν(i)

− xmin ν̄(i)
,

(xmin ρ2
, · · ·xmin ρr) 7→ (x̂1 · · · , x̂r−1).

We need to count the number of clustering collisions of T> happening between time δ and time
θ. If r > nk, all the r− 1 collisions in T> cannot correspond to the nk− 1 annihilations of the time
interval [(k′ + 1)δ, t− ts]. Thus at least (r− nk)+ collision happen in [δ, (k′ + 1)δ] ⊂ [0, 2θ].

Fix ti+1 the time of the (i+ 1)-th clustering collision and the relative positions x̂i−1, · · · , x̂1. We
define the i-th clustering set

Bi :=
⋃

q∈
⋃
j∈ν(i)

ρj

q̄∈
⋃
̄∈ν̄(i)

ρ̄

Bq,q̄i

with
Bq,q̄i :=

{
x̂i

∣∣∣ ∃ti ∈ [0, ti+1 ∧ Ti], |xq̄(ti)− xq̄(ti)| = ε
}

and Ti := 2θ for the (r− nk)+ first collisions, t else.
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0

τ1

δ

τ3

τ4

t

τ2

1 2 3 4 5 6 7 8 9 10 11

̟1

ρ1
ρ2 ρ3 ρ4

Figure 10. Example of a configuration of particles, its pseudotrajectory and the
construction of its clustering tree. In this example, we set ω1 = {4, 6, 8, 10, 11},
ω2 = {1, 5, 7, 9}, and ω3 = {2, 3}. The black pseudotrajectory (involving particle
ω1 ∩ ω2) gives the position of the last existing particle 6. For the particle in
$1 = {1, 2, 3} one can find pseudotrajectory parameters such that the associated
trajectory (represented in orange) has one recollision. We construct the distance
cluster (ρi)i, and its clustering tree T> = ((2, 3), (3, 4), (1, 2)). The collision at time
τ4 is not clustering.

Up to time ti the curve xq and xq̄ are independent. Hence we can perform the change of variable
x̂i 7→ (ti, ηi) with ti the minimal collision time and

ηi =
xq̄(ti)− xq̄(ti)
|xq̄(ti)− xq̄(ti)|

.

The Jacobian of this diffeomorphism is µ−1
ε |(vq̄(ti)− vq̄(ti)) · ηi|dtidηi. We integrate and we apply

Cauchy-Schwartz inequality, using that the kinetic energy associated with cluster ρν(i)
is non-

increasing (we can only remove particles) up to time ti.
Note that∑

q∈ν(i)

q̄∈ν̄(i)

‖vq̄(ti)− vq̄(ti)‖ ≤ ‖Vρν(i) (ti)‖ |ρν(i)
|1/2|ρν̄(i)

|+ ‖Vρν̄(i) (ti)‖ |ρν̄(i)
|1/2|ρν̄(i)

|

≤
(
|ρν(i)

|+ ‖Vρν(i) ‖
2
)(
|ρν̄(i)

|+ ‖Vρν̄(i)‖
2
)

≤
∑

νi∈ν(i)

ν̄i∈ν̄(i)

(
|ρνi |+ ‖Vρνi‖

2
)(
|ρν̄i |+ ‖Vρν̄i‖

2
)
.
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This gives the following bound on |Bi|

|Bi| ≤
C

µε

∫ ti+1∧Ti

0

dti
∑
q,q̄

‖vq̄(ti)− vq̄(ti)‖

≤ C

µε

∑
νi∈ν(i)

ν̄i∈ν̄(i)

(
|ρνi |+ ‖Vρνi‖

2
)(
|ρν̄i |+ ‖Vρν̄i‖

2
)∫ ti+1∧Ti

0

dti.

Permuting the product and the sum,∑
(ν(i),ν̄(i))

r−1∏
i=1

(
|ρν(i)

|+ ‖Vρν(i) ‖
2
)(
|ρν̄(i)

|+ ‖Vρν̄(i)‖
2
)

=
∑

(ν(i),ν̄(i))

r−1∏
i=1

∑
νi∈ν(i)

ν̄i∈ν̄(i)

(
|ρνi |+ ‖Vρνi‖

2
)(
|ρν̄i |+ ‖Vρν̄i ‖

2
)

=
∑

(νi,ν̄i)

r−1∏
i=1

(
|ρνi |+ ‖Vρνi‖

2
)(
|ρν̄i |+ ‖Vρν̄i ‖

2
)
.

Using that

∀a, b ∈ N,
(a+ b)!

a!b!
≤ 2a+b,

we have ∫ t

0

dtr−1 · · ·
∫ t2∧T2

0

dt1 ≤
tnk∧r−1

(nk ∧ r− 1)!

θ(r−nk)+

((r− nk)+)!
≤ 2r−1 t

nk∧r−1θ(r−nk)+

(r− 1)!
.

We can sum now on the clustering collisions:∫
1Rρ,p

((si,s̄i),(κi)

dx̂1 · · · x̂r−1 ≤
∑

(ν(i),ν̄(i))

∫
dx̂′11B1

∫
dx̂′2 · · ·

∫
dx̂r−11Br−1

≤
(
C

µε

)r−1 ∫ t

0

dtr−1 · · ·
∫ t2∧T2

0

dt1
∑

(ν(i),ν̄(i))

r−1∏
i=1

(
|ρν(i)

|+ ‖Vρν(i)‖
2
)(
|ρν̄(i)

|+ ‖Vρν̄(i) ‖
2
)

≤
(

2C

µε

)r−1
tnk∧r−1θ(r−nk)+

(r− 1)!

∑
(νi,ν̄i)

r−1∏
i=1

(
|ρνi |+ ‖Vρνi‖

2
)(
|ρν̄i |+ ‖Vρν̄i‖

2
)
.

Then denoting di(G) the degree of vertices in a graph, Tr the set of minimally (not oriented)
connected graphs on [1, r],∫

1Rρ,p
((si,s̄i),(κi)

dx̂1 · · · x̂r−1 ≤
(

2C

µε

)r−1
tnk∧r−1θ(r−nk)+

(r− 1)!

∑
T>∈T >r

r∏
i=1

(
|ρi|+ ‖Vρi‖2

)di(T>)

≤
(

2C

µε

)r−1

tnk∧r−1θ(r−nk)+

∑
T∈Tr

r∏
i=1

(
|ρi|+ ‖Vρi‖2

)di(T )

.

For A,B > 0, x ∈ R, there exists a constant C > 0 such that(
A+ x2

)B
e−

x2

4 ≤
(

4B
e

)B
e
A
4 .
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We use this inequality to bound∫
1Rρ,p

((si,s̄i),(κi)

e−
1
4‖Vp‖

2

dx̂1 · · · x̂r−1

≤
(
C

µε

)r−1

tnk∧r−1θ(r−nk)+

∑
T∈Tr

r∏
i=1

(
|ρi|+ ‖Vρi‖2

)di(T )

e−
1
4

∑r
i=1 ‖Vρi‖

2

≤ C̃l t
nk∧r−1θ(r−nk)+

µr−1
ε

∑
T∈Tr

r∏
i=1

di(T )di(T ) .

(6.23)

Next we use that for fixed (d1, · · · , dr) such that
∑
i di = 2(n− 1),

(6.24)
∣∣{T ∈ Tr∣∣∀i ≤ r, di(T ) = di

}∣∣ =
(r− 2)!

(d1 − 1)! · · · (dr − 1)!

(see section 2 of [6]), which leads to∑
T∈Tr

r∏
i=1

di(T )di(T ) = (r− 2)!
∑

d1,··· ,dr
r−1≥di≥1∑
i di=2(r−1)

r∏
i=1

ddii
(di − 1)!

≤ (r− 2)!Cr
∑

d1,··· ,dr−1

r−1≥di≥1
r−1≤

∑
i di≤2r−3

1

≤ Cr(r− 2)!
(2r− 3)r−1

(r− 1)!
≤ C̃p(r− 1)!.

(6.25)

Finally, ∫
1Rρ,p

((si,s̄i),(κi)

e−
1
4‖Vp‖

2

dx̂1 · · · x̂r−1 ≤
Cptnk∧r−1θ(r−nk)+

µr−1
ε

�

We can integrate now the condition ∆pi(Zρi). The particles in Zρi have to form a distance
cluster. Thus every particle is in a ball of radius |ρi|δV in Λ|ρi|−1. Because clusters are of size at
most γ, ∫

Λ|ρi|−1×(Rd)|ρi|
∆pi(Zρi)

e−
1
4
‖Vρi‖

2

(2π)d|ρi|/2 dX̃idVρi ≤ Cγµ−|ρi|+1
ε

(
δdVdµε

)|ρi|−1
.

In addition, for at least one ρi, the set $i is not empty. So we can apply estimate (2.6) and
combining the two estimates∫

1Rρ,p
((si,s̄i),(κi)

(Zp)

r∏
i=1

∆pi(Zρi)M
⊗p(Vp)dX2,pdVp

≤ (r− 1)!C̃p
tnk∧r−1θ(r−nk)+

µr−1
ε

r∏
i=1

(∫
∆pi(Zρi)

e−
1
4
‖Vρi‖

2

(2π)d|ρi|/2 dX̃idVρi

)

≤ (r− 1)!Cp
tnk∧r−1θ(r−nk)+

µr−1
ε

(
δdVdµε
µε

)(
∑r
i=1 |ρi|−1)−2(

δ

µε

)2

εα.
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Every particle annihilated in the time interval [0, δ] has a clustering collision in this interval and
thus is in a distance interval. Therefore

∑r
i=1(|ρi| − 1) is bigger than p − n′. In addition we have

chosen θ bigger than δdVdµε (which is a power of ε) and∫
1Rρ,p

((si,s̄i),(κi)

(Zp)

r∏
i=1

∆pi(Zρi)M
⊗pdX2,pdVp ≤ (r− 1)!

Cp

µp−1
ε

tnk−1θ(p−nk−2)+δ2εα.(6.26)

We sum now on the parameters ((si, s̄i), (κj)) and (pi). Because size of γδV-distance clusters are
bounded by γ, the |P(ρi)| are smaller than some Cγ > 0 depending only on γ. The conditioning
bounds also the number of collision parameters ((si, s̄i), (κj)) by (4γ)n

′′
. Thus∫ ∣∣Φk′n,n′,n′′,p(Zp)∣∣M⊗pdX2,pdVp ≤

‖h‖(CCγ4γ)p

p!µp−1
ε

tnk−1θ(p−nk−2)+δ2εα
p∑
r=1

∑
ρ∈Prp

(r− 1)!

1

p!

p∑
r=1

∑
ρ∈Prp

(r− 1)! =
1

p!

p∑
r=1

∑
k1+···+kr=p

ki≥1

p!

k1! · · · kr!
(r− 1)!

r!
≤

p∑
r=1

∑
k1+···+kr=p

ki≥1

1

k1! · · · kr!
≤ ep

hence ∫ ∣∣Φk′n,n′,n′′,p(Zp)∣∣M⊗pdX2,pdVp ≤
‖h‖p

(
eC̃
)p

µp−1
ε

tk−1θ(p−nk−2)+δ2εα .

This ends the proof of the first inequality.
�

Proof of (6.14). We begin applying (6.21) to bound |Φk′n,n′,n′′,p(Zp)Φk
′

n,n′,n′′,p(Zm, Zp+1,2p−m)
∣∣:

(6.27)

|Φk
′

n,n′,n′′,p(Zp)Φ
k′

n,n′,n′′,p(Zp+1−m,2p−m)
∣∣

≤ ‖h‖
2

(p!)2

∑
((si,s̄i),(κj))
((si,s̄i),(κj))

∑
ω1tω2tω3=[p]

ω′1tω
′
2tω

′
3=[p+1−m,2p−m]

|ω1|=|ω′1|=n
′

|ω2|=|ω′2|=p−n
′′

∑
p,p′≥1

∑
$∈Qp

ω1,ω2

$′∈Qp′

ω′1,ω
′
2

1R((si,s̄i),(κj))
(Zω1∪ω3)

×1R((s′
i
,s̄′
i
),(κj))

(Zω′1∪ω′3)

p∏
i=1

χ(Z$i)

p′∏
i=1

χ(Z$′i).

Note that the right hand side is invariant under translation. Thus one can fix x1 = 0 and
integrate with respect to the other variables.

For a position Z2p−m, we consider ρ := (ρ1, · · · , ρr) the γδV-cluster. We can then construct the
parameters pi := (ωi, ω′i, $i, $′i):

• ωi := (ωi1, ω
i
2, ω

i
3) is a partition of ρi ∩ [1, p] defined by ωij := ωj ∩ ρi,

• ω′i := (ωi1, ω
i
2, ω

i
3) is a partition of ρi ∩ [p+ 1−m, 2p+m] defined by ωij := ωj ∩ ρi,

• $i := {$j such that $j ⊂ ρi} and
• $′i := {$′j such that $′j ⊂ ρi}.

We denote now P(ρi) the new set of possible parameters pi (this will not create a conflict with the
previous section). Because each cluster ρi is of size at most γ, |P(ρi)| is bounded by some constant
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Cγ depending only on γ. We define

∆pi(Zρi) := 1Zρi form a distance cluster

|$i|∏
j=1

χ(Z$ij )

|$′i|∏
j=1

χ(Z$′ji) and

Rρ,p((si,s̄i),(κi))
((s′i,s̄

′
i),(κ

′
i))

:=
{
Z2p−m ∈ D

ρ
ε , Zω1∪ω3

∈ R((si,s̄i),(κi), Zω′1∪ω′3 ∈ R((s′i,s̄
′
i),(κ

′
i)

}
and we have as in the previous case

|Φk
′

n,n′,n′′,p(Zp)Φ
k′

n,n′,n′′,p(Zm, Zp+1,2p−m)
∣∣

≤ ‖h‖
2

(p!)2

2p−m∑
r=1

∑
ρ∈Prp

∑
((si,s̄i),(κj))

((s′i,s̄
′
i),(κ

′
j))

p∈
∏
i
P(ρi)

1Rρ,p
((si,s̄i),(κi)
((s′i,s̄

′
i),(κ

′
i)

(Z2p−m)

r∏
i=1

∆pi(Zρi).

Note that, for at least one i, $i is not empty.
As in the previous section, we introduce the change of variable

X2,(2p−m) → ((xmin ρi)2≤i≤r, (X̄i)i≤r), X̄i := (xj − xmin ρi)j∈ρi .

Lemma 6.5. Fixing p, ρ, ((si, s̄i)i, κj) and the coordinates Vp and (X̄i)i≤r, one obtains the following
bound:

(6.28)
∫
1Rρ,p

((si,s̄i),(κi)
((s′i,s̄

′
i),(κ

′
i)

e−
1
4‖V2p−m‖2dxmin ρ2 · · · dx̂min ρr ≤

Cptnk∧r−1θ(r−nk)+

µr−1
ε

Proof. We construct now a clustering tree in order to estimate Rρ,p((si,s̄i),(κi)
((s′i,s̄

′
i),(κ

′
i)

.

Consider the collision graph associated with the first pseudotrajectory G[0,t−ts]
ω1∪ω3

and the graph
associated with second one G[0,t−ts]

ω′1∪ω′3
. Merge them and identify vertices in a same cluster ρi. Keeping

only the first clustering collisions, we obtain the oriented tree T> := (νi, ν̄i)1≤i≤r−1. Note that these
clustering collisions can happen in the first or in the second pseudotrajectory.

As in the proof of (6.13) we have to bound the number of collisions of T> in the time interval
[0, 2τ ]. There are at most (nk − 1 + p − m) collision in [(k′ + 1)δ, t − ts] (nk − 1 for the first
pseudotrajectory and we have to connect p −m particles in the second). Thus there are at least
(r− (nk − 1 + p−m))+ clustering collisions in [δ, (k′ + 1)δ] ⊂ [0, 2τ ].

We explain quickly how to estimate the i-th collision. As in the previous paragraph, we construct
the modified tree parameters (ν(i), ν̄(i)) and the change of variable

∀i ∈ {1, · · · , r− 1}, x̂i := xmin ν(i)
− xmin ν̄(i)

, X̃i := (xj − xmin ρi)j∈ρi ,

X2,l 7→ (x̂1 · · · , x̂r−1, X̃1, · · · , X̃r),

and we integrate on the (x̂i)i.
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The clustering set Bi is defined as follows: fix ti+1 the time of the (i+ 1)-th clustering collision
and the relative positions x̂i−1, · · · , x̂1. We define the i-th clustering set

Bi :=
⋃

q∈
⋃
j∈ν(i)

ρj

q∈
⋃
̄∈ν̄(i)

ρ̄

(
Bq,q̄i ∪B

′q,q̄
i

)

with
Bq,q̄i :=

{
x̂i

∣∣∣ ∃ti ∈ [0, ti+1 ∧ Ti], |xq̄(ti)− xq̄(ti)| = ε
}
,

where xi(τ) is the pseudotrajectory with respect to parameters ((si, s̄i)i, (κj)j) and Ti := 2θ for the
(r−nk)+ first collisions, t else, and B′q,q

′

i is defined in the same way for the other pseudotrajectory.
We can apply the estimate of the previous paragraph:∫

1Bidx̂i ≤
2C

µε

∑
νi∈ν(i)

ν̄i∈ν̄(i)

(
|ρνi |+ ‖Vρνi ‖

2
)(
|ρν̄i |+ ‖Vρν̄i‖

2
)∫ ti+1∧Ti

0

dti.

In this way, we end up with the same situation as in the proof of Lemma 6.4 and we can apply
the same argument. �

Lemma 6.5 provides a similar estimation than Lemma 6.4. In a second time, one can integrate
the ∆pi with respect to (Vp, (X̄i)i) using the same computation as for the proof of (6.13),∫

|Φk
′

n,n′,n′′,p(Zp)Φ
k′

n,n′,n′′,p(Zp+1−m,2p−m)
∣∣M⊗(2p−m)dX2,2p−mdV2p−m

≤ (2p−m)!‖h‖2

(p!)2µ2p−m−1
ε

Cpδ2εατ (p−nk−2)+tnk−1+p−m

≤ ‖h‖2

pmµ2p−m−1
ε

C̃pδ2εατ (p−nk−2)+tnk−1+p−m

which concludes the proof. �

Proof of (6.15). In fp←l
[
Φ0,k′

n,n′ [h]
] (
Z[1,l]

)
Xn′,p(Z[1,p]) we have three set of indices:

• [1, n′] the set of particles created in the final pseudotrajectory,
• [n′ + 1, p] the particles added in the treatment of local recollision and
• [p+ 1, l] particles added in the dynamical cluster development.

Any permutation σ which sends [1, n′], [n′ + 1, p] and [p+ 1, l] onto themselves stabilizes

fp←l
[
Φ0,k′

n,n′ [h]⊗ 1⊗(p−n′)] (Z[1,l]

)
Xn′,p(Z[1,p])

and

Φk
′

n,n′,p,l(Zl)
n′! (p− n′)! (l − p)!

l!

∑
ω1tω2tω3=[l]
|ω1|=n′
|ω2|=l−p

fp←l
[
Φ0,k′

n,n′ [h]⊗ 1⊗(p−n′)] (Zω1∪ω2
, Zω3

)

× Xn′,p(Zω1
, Zω2

)

We develop fp←l
[
Φ0,k′

n,n′ [h]⊗1⊗(p−n′)]: for ω = (ω1, ω2, ω3), λ two partitions of [1, l] with ω1∪ω2 ⊂
λ1 and (si, s̄i)1≤i≤n′−1, we define Rω,λ(si,s̄i)

⊂ Dlε the set of initial data such that particles in λ1 form
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a (ω1 ∪ ω2)-cluster (see the previous part for the definition of cluster pseudotrajectories), and the
tree pseudotrajectory Zn′(τ, (si, s̄i),Zλ1

ω1
(δ)) with

∑j
i=1 ki particles at time τ := (k′+ 1)δ+ (k− j)τ .

Then we can write:
Φk
′

n,n′,p,l(Zl)

= − 1

l!

∑
ω1tω2tω3=[l]
|ω1|=n′
|ω2|=p−n′

l∑
l=1

∑
λ1⊂[l]

ω1∪ω2⊂λ1

∑
(λ2,··· ,λl)

∈Pl−1
λc1

∑
(si,s̄i)

∑
p≥1

$∈Qp
ω1,ω2

1Rω,λ
(si,s̄i)

h(Zn′(τ, (si, s̄i),Zλ1
ω1

(δ)))

p∏
i=1

χ
(
Z$i

)
×

n∏
i=1

s̄i

l∏
i=2

ϕ|λi|
(
Zλi
)
ψl

(
Zλ1 , · · · , Zλl

)
.

The pseudotrajectory of the particles is represented in Figure 11.
We recall the Penrose’s tree inequality (see for example the second section of [6] for a proof)∣∣∣ψl

(
Zλ1 , · · · , Zλl

)∣∣∣ =

∣∣∣∣∣∣
∑

C∈C(ω)

∏
(i,j)∈E(C)

−1
λi
◦∼λj

∣∣∣∣∣∣ ≤
∑
T∈Tl

∏
(i,j)∈E(T )

1
λi
◦∼λj

.

Hence we obtain the following bound on Φk
′

n,n′,p,l, invariant under translation:

(6.29)
∣∣∣Φk′n,n′,p,l∣∣∣(Zl) ≤ ‖h‖l! ∑

ω∈P3
l

|ω1|=n′
|ω2|=p

l∑
l=1

∑
λ∈Pl

l
ω1∪ω2⊂λ1

∑
(si,s̄i)

∑
p≥1

1Rω,λ
(si,s̄i)

p∏
i=1

χ
(
Z$i

) l∏
i=2

ϕ|λi|
(
Zλi
)

×
∑
T∈Tl

∏
(i,j)∈E(T )

1
λi
◦∼λj

.

We will use again the distance cluster to control the relations between particles in the time
interval [0, δ]. Let ρ := (ρ1, · · · , ρr) the distance partition of Zl. For each ρi, we construct the
collision parameter p := (ωi, λi, $i) with:

• ωi := (ωi1, ω
i
2, ω

i
3) is a partition of ρi ∩ [1, p] defined by ωij := ωj ∩ ρi,

• λi := {λi1 := λ1 ∩ ρi} ∪ {λj for j ≥ 2 with λj ⊂ ρi} a partition of ρi and
• $i := {$j such that $j ⊂ ρi},

and we denote P(ρi) the set of possible pi.
The global conditioning bounds velocities, so that particles which form a collisional cluster have

to be in a same distance cluster. Thus for each $j and λk, k ≥ 2 there exists a ρi containing λk
or $j . In addition, for i 6= i′, particles in λi1 do not interact with particles of λi

′

1 . The overlaps are
also contained in the distance cluster: if we denote two dynamical clusters λj and λj′ with j, j′ ≥ 2,
there exists a ρi containing both, and if λj ⊂ ρi has an overlap with λ1, then λj has an overlap
with λi1. This last property allows us to rewrite the overlap cumulant: on Dρε ,∣∣∣ψl

(
Zλ1 , · · · , Zλl

)∣∣∣ ≤ ∑
T∈Tl

∏
(i,j)∈E(T )

1
λi
◦∼λj
≤

r∏
i=1

∑
Ti∈T|ρi|

∏
(j,j′)∈E(Ti)

1
λij
◦∼λi

j′
≤

l∏
i=1

∣∣∣T (ρi)
∣∣∣.

We have now the following bound∣∣Φk′n,n′,p,l(Zl)∣∣ ≤ ‖h‖l!
l∑

r=1

∑
ρ∈Pr

l

∑
(si,s̄i)

p∈
∏
i
P(ρi)

1Rρ,p
(si,s̄i)

r∏
i=1

∆pi(Zρi)
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with

∆pi(Zρi) :=
∣∣∣T (ρi)

∣∣∣1Zρi form a distance cluster

|$i|∏
j=1

χ(Z$ij ) and

Rρ,p(si,s̄i)
:=
{
Zl ∈ D

ρ
ε , Zl ∈ Rω,λ(si,s̄i)

}
.

0

δ

t

τ3

τ2
τ1

3 4 5 6 7 8 9 10 11 12 13

λ2 λ3 λ4

Λ

ρ3ρ2ρ1

̟1

1 2

Figure 11. Example of construction of a clustering tree. Here, ω1 = {3, 6, 9, 12},
ω2 = {1, 2} and ω3 = (4, 5, 7, 8, 10, 11, 13). In addition the set λ1 is equal to
{1, 2, 3, 6, 7, 9, 12} (represented by the blue particles). The particles of $1 are
involved in a pseudotrajectory (represented in orange) leading to a recollision. The
black pseudotrajectory represents the trajectory of the last existing particle (here
9). We can construct a clustering tree as in the proof of (6.13): T> := ((1, 2), (2, 3)).

Finally we construct the clustering tree : we consider the collision graph of the particles ω1 on
the time interval [δ, t− ts]. Then we identify vertices in a same cluster ρi and we keep only the first
clustering collision. This constructs an ordered tree T> ∈ T >r .

As in the previous cases, the condition of respecting the collision history T> depends only on
the relative positions at time δ which are the same than at time 0 (clusters do not interact). We
can apply the same method than in the estimation (6.13) and we obtain the expected bound. �

Proof of (6.16). We adapt the proof of (6.14) with the parametrisation of the previous part. �

7. Treatment of the principal part

In this section we conclude the proof of our main theorem (Equation (1.14)), by discussing the
main term of the expansion Gmain

ε (t).
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7.1. Duality formula. We recall that

Gmain
ε (t) =

∑
n1≤···≤nK
nj−nj−1≤2j

Eε

µ−1/2
ε

∑
(i1,··· ,inK )

Φ0
n[h]

(
Zi(0)

)
ζ0
ε (g)

 =
∑

n1≤···≤nK
nj−nj−1≤2j

Eε
[
µnkε Φ̂0

n[h] ĝ
]

where Φ0
n[h] is the development of h(zi(t)) along pseudotrajectories with nk particles at time t−nkθ

and no recollision.
We denote

(7.1) gεn(Zn) :=

(
n∑
k=1

g(zk)

)
1

Zε

∑
p≥0

µpε
p!

∫
e−Vn+p(Xn+p)dXn+1,n+p.

Then using the equality (3.7) and L1 estimations on Φ0
n of Section 4, we have for h and g in L∞

Gmain
ε (t) =

∑
n1≤···≤nK
nj−nj−1≤2j

Eε

µ−1
ε

∑
inK

Φ0
n[h]

(
Zink

(0)
) nK∑
j=1

g(zij (0))

+O

(
ε
∑
n

(Ct)nk‖h‖‖g‖

)

=
∑
n

∫
µnK−1
ε Φ0

n[h] (ZnK ) gεnK (ZnK )
e−HnK (ZnK )dZnK

(2π)
nKd

2

+O
(
ε
(
K2K

2

(Ct)2K+1

‖h‖‖g‖
))

.

We want to compute the asymptotics of each term in the sum.∫
µnK−1
ε Φ0

n[h] (Znk(0)) gεnk(Znk)
e−HnK (ZnK )dZnK

(2π)
nKd

2

=
µnK−1
ε

nK !

∫ ∑
(si,s̄i)i

nK−1∏
i=1

s̄i1Rn
(si,s̄i)

h
(
Znk(t)

)
gεnK (ZnK )M⊗nKdZnK

where Rn(si,s̄i) ⊂ D
nK
ε is the set of initial parameters such that for each k ∈ [0,K], the pseudotra-

jectory ZnK (τ, (si, s̄i)) has nk particles at time t− kθ, and no recollision.
We order now the annihilations. Fixed an initial position ZnK and given collision parameters

(si, s̄i)i, we can construct a collision tree (ai, bi) where the i-th removed particle is bi, after a collision
with ai. We have a one-to-one correspondence between the admissible (ai, bi)i and the (si)i, thus
we can change the collision parameters to (ai, bi, s̄i). Due to the symmetry of gεnK , we can reorder
particles by setting bi = nK − i+ 1. Denoting ãi := anK−i+1, s̃i := s̄nK−i+1 and Rn(ãi,s̃i)i the set of
initial parameters respecting the collision constraints (ãi, s̃i)2≤i≤nK ,∫

µnK−1
ε Φ0

n[h] (ZnK ) gεnK (ZnK )⊗nKdZnK

= µnK−1
ε

∑
(ãi,s̃i)i

nK∏
i=2

s̃i

∫
Rn

(ãi,s̃i)i

h(ZnK (t)))gεnK (ZnK )M⊗nKdZnK .

Note that the admissible (ai)2≤i≤nK verifies ai ∈ [1, i− 1].
We define now the backward pseudocharacteristic

ξεnK (τ, (ãi, s̃i)i, z1, (ti, v̄i, ηi)2≤i≤nK )
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with a final point z1 and parameters (τi, v̄i, ηi)2≤i≤nK ∈ (R+ × Rd × Sd−1)nK−1 with t > t2 >
· · · > tnK > 0. We construct sequentially the trajectory on each [ti+1, ti]. We begin at time t with
particle 1 at z1. Let us specify the coordinate of the pseudocharacteristic at time τ ∈ (ti, ti−1).
In the interval (ti+1, ti), there are i − 1 particles ξεnK (τ) = (zε1(τ), · · · , zεi−1(τ)) which move along
straight line (backwards). At time t+i , we add particle i at position (xεãi(τ) + εηi, v̄i). If s̃i = 1 we
apply the scattering between particles ãi and i, else the particles do not interact. Note that the
velocities vεi (τ) do not depend on ε.

We denoteGn,0(ãi,s̃i)i
(z1) andGn,ε(ãi,s̃i)i

(z1) the definition set of pseudocharecteristics: for z1 ∈ Λ×Rd

Gn,0(ãi,s̃i)i
(z1) :=

{
(ti, v̄i, ηi)i ∈ (R× Rd × Sd−1)nK−1

∣∣∣ t > t2 > · · · > tnK > 0,

∀i ∈ [nj−1 + 1, nj ], ti ∈ (t− jθ, t− (j − 1)θ), (vεi (t
+
i )− v̄i) · ηi < 0

}
,

and Gn,ε(ãi,s̃i)i
(z1) the subset of Gn,0(ãi,s̃i)i

(z1) such that distances between particles are bigger than ε
when one particle is created (trajectories without overlap).

We then perform do the change of variables

(7.2)

⋃
z1∈D
{z1} ×Gn,0(ãi,s̃i)i

(z1) −→ Rn(ãi,s̃i)i
(z1, (ti, v̄i, ηi)i) 7−→ ξεnK (τ = 0).

Since we have removed all the recollisions, this map is a bijection. It is a local diffeomorphism,
hence a diffeomorphism. It sends a measure

(7.3) M(v1)dz1dΛ
n
(ãi,s̃i)i

:= M(v1)dz1

nK∏
i=2

(
(vεa(i)(t

+
i )− v̄i) · ηi

)
+
M(vi)dv̄idηidti

onto µnk−1
ε M⊗nKdZnK . We will denote with a little abuse of notation:

D×Gn,ε(ãi,s̃i)i
:=

⋃
z1∈D
{z1} ×Gn,ε(ãi,s̃i)i

(z1).

We finally arrive to the following duality formula

µnK−1
ε

∫
Φ0
n[h] (ZnK ) gεnK (ZnK )M⊗nK (VnK )dZnK

=
∑

(ãi,s̃i)i

nK−1∏
i=1

s̃i

∫
D×Gn,ε

(ãi,s̃i)i

h(z1)gεnK (ξεnK (0))M(v1)dz1dΛ
n
(ãi,s̃i)i

.
(7.4)

Denoting

gnK (ZnK ) :=

nK∑
i=1

g(zi),

we have formally∫
µnK−1
ε Φ0

n (ZnK ) gεnK (ZnK )M⊗nK (VnK )dZnK

−→
ε→0

∑
(ãi,s̃i)i

nK−1∏
i=1

s̃i

∫
D×Gn,0

(ãi,s̃i)i

h(z1)gnK (ξ0
nK )M⊗nK (VnK )dZnKdΛ

n
(ãi,s̃i)i

.
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In order to have explicit rates of convergence, we decompose the error in three parts:∫
µnK−1
ε Φ0

n g
ε
nKM

⊗nK (VnK )dZnK

=
∑

(ãi,s̃i)i

nK−1∏
i=1

s̃i

∫
D×Gn,0

(ãi,s̃i)i

h(z1)gnK (ξ0
nK (0))M(v1)dz1dΛ

n
(ãi,s̃i)i

+R1 +R2 +R3

(7.5)

R1 =
∑

(ãi,s̃i)i

nK−1∏
i=1

s̃i

∫
D×Gn,0

(ãi,s̃i)i

h(z1)
(
gnK (ξεnK (0))− gnK (ξ0

nK (0))
)
M(v1)dz1dΛ

n
(ãi,s̃i)i

R2 = −
∑

(ãi,s̃i)i

nK−1∏
i=1

s̃i

∫
D×Gn,0

(ãi,s̃i)i

h(z1)gnK (ξεnK (0))
(

1− 1Gn,ε
(ãi,s̃i)i

(z1)

)
M(v1)dz1dΛ

n
(ãi,s̃i)i

R3 =
∑

(ãi,s̃i)i

nK−1∏
i=1

s̃i

∫
D×Gn,ε

(ãi,s̃i)i

h(z1)
(
gεnK (ξεnK (0))− gnK (ξεnK (0))

)
M(v1)dz1dΛ

n
(ãi,s̃i)i

.

They are estimated using the following standard results:

Lemma 7.1. Fix n̄ := (n1, · · · , nk). For any ε > 0 sufficiently small, we have for p ∈ [1, 2] and
z1 ∈ D ∑

(ãi,s̃i)i

∫
Gn,0

(ãi,s̃i)i
(z1)

(
nK∏
i=2

∥∥vεãi(t+i )− v̄i
∥∥pM(v̄i)dv̄idηidti

)
e−

1
2‖v1‖2

(2π)d/2

≤ (C(K − 1)θ)nK−1(Cθ)nK−nK−1e−
‖v1‖

2

4 .

(7.6)

Proof. We follow the proof of Lemma 4.2 in [22].
For i ∈ [2, nK ] we forget parameters (ãj)i<j≤nK and (tj , v̄j , ηj)i<j≤nK :

i−1∑
ãi=1

∥∥vεãi(t+i )− v̄i
∥∥pe− ‖v1‖2+

∑i−1
j=2
‖v̄j‖

2

8nK
− ‖v̄i‖

2

8

≤ 2p−1

i−1∑
j=1

‖vj(t+i )‖p + (i− 1)‖v̄i‖p
 e− ‖v1‖2+

∑i−1
j=2
‖v̄j‖

2

8nK
+
‖v̄i‖

2

8

≤ 2p−1


i−1∑
j=1

‖vj(t+i )‖2
p/2

(i− 1)1−p/2 + (i− 1)‖v̄i‖p

 e− ‖v1‖2+
∑i−1
j=2
‖v̄j‖

2

8nK
+
‖v̄i‖

2

8 ,

i−1∑
ãi=1

∥∥vεãi(t+i )− v̄i
∥∥pe− ‖v1‖2+

∑i−1
j=2
‖v̄j‖

2

8nK
− ‖v̄i‖

2

8

≤ 2p−1


‖v1‖2 +

i−1∑
j=2

‖v̄j‖2
p/2

(i− 1)1−p/2 + (i− 1)‖v̄i‖p

 e− ‖v1‖2+
∑i−1
j=2
‖v̄j‖

2

8nK
+
‖v̄i‖

2

8

≤ C
[
n
p/2
K (i− 1)1−p/2 + (i− 1)

]
≤ CnK .
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Thus ∑
(ãi,s̃i)i

∫
Gn,0

(ãi,s̃i)i
(z1)

(
nK∏
i=2

∥∥vεãi(t+i )− v̄i
∥∥pM(v̄i)dv̄idηidti

)
e−

1
2‖v1‖2

(2π)d/2

≤
∫ Kθ

θ

dt2 · · ·
∫ tnK−1−1

θ

dtnK−1

∫ θ

0

dtnK−1+1 · · ·
∫ tnK−1

0

dtnK

×
∫

(Sd−1×Rd)nK−1

CnK−1nnK−1
K e−

‖v1‖
2+

∑i−1
j=2
‖v̄j‖

2

4

(
nK∏
i=2

dv̄idηi
(2π)d/2

)

≤ C(C(K − 1)(nK − 1)θ)nK−1−1

(nK−1 − 1)!

(CθnK)nK−nK−1

(nK − nK−1)!
≤ (C̃t)nK .

�

Lemma 7.2. Fix n̄ := (n1, · · · , nK). For any ε > 0 sufficiently small, we have

(7.7)
∑

(ãi,s̃i)i

∫
D×Gn,0

(ãi,s̃i)i

∣∣∣1− 1Gn,ε
(ãi,s̃i)i

(z1)

∣∣∣M(v1)dz1dΛ
n
(ãi,s̃i)i

≤ (Ct)nKεα .

This is an estimation of the set of parameters leading to an overlap. It can be obtained in the
same as the estimation of recollisions of Section 3.

From Lemma 7.2 we deduce
|R1| ≤ C(Ct)nKεα‖g‖ ‖h‖.

Lemma 7.3. Fix n̄ := (n1, · · · , nk), ε > 0 sufficiently small, and XnK ∈ ΛnK such that for i 6= j

|xi − xj | > ε.

Then

(7.8)

∣∣∣∣∣1− 1

Zε

∑
p≥0

µpε
p!

∫
e−VnK+p(XnK ,X̄p)dX̄p

∣∣∣∣∣ ≤ CnKε .
Proof. Using the formula (3.9), for any XnK ∈ ΛnK with |xi − xj | > ε for i 6= j,

exp
(
−VεnK+p(XnK , Xp)

)
=

∑
ω⊂[1,p]

e−V
ε
nK

(XnK )−Vε|ωc|(Xωc )ψnKp (XnK , Xω)

=
∑

ω⊂[1,p]

e−V
ε
|ωc|(Xωc )ψnKp (XnK , Xω).

Then∑
p≥0

µpε
p!

∫
e−VnK+p(XnK ,X̄p)dX̄p =

∑
p≥0

∑
p1+p2=p

µpε
p!

p!

p1!p2!

∫
e−V

ε
p2

(X′p2
)ψnKp1

(XnK , Xp1
)dX̄p1

dX̄ ′p2

= Zε
∑
p≥0

µpε
p!

∫
ψnKp (XnK , Xp)dX̄p

= Zε
(

1 +
∑
p≥1

µpε
p!

∫
ψnKp (XnK , Xp)dX̄p

)
.
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Using the estimation (3.12),∑
p≥1

µpε
p!

∫
ψnKp (XnK , Xp)dX̄p ≤

∑
p≥1

µpε
p!

(p− 1)!
(
Ceεd

)p
nKe

nK ≤
∑
p≥1

(
C ′ε
)p
nKe

nK ≤ 2εnKe
nK

for ε small enough. This concludes the proof. �

Using Lemmata 7.1 and 7.3 we obtain

|R3| = C(Ct)nKε‖g‖ ‖h‖.

Lemma 7.4. Fix n̄ := (n1, · · · , nk), ε > 0 and (z1, (ti, v̄i, ηi)i) ∈ D×Gn,ε(ãi,s̃i)i
. We have

(7.9)
∣∣ξεnK (0)− ξ0

nK (0)
∣∣ ≤ n3/2

K ε .

Proof. We recall first that the two trajectories ξεnK (τ) and ξ0
nK (τ) have coincident velocities and

at each annihilation of a particle there is a new shift of size ε. Thus for any i bigger than 1,
‖xεi (τ)− x0

i (τ)‖ ≤ (i− 1)ε and, summing up,

‖ξεnK (τ)− ξ0
nK (τ)‖2 ≤ n3

Kε
2.

�

If g is uniformly Lipschitz, by Lemmata 7.1 and 7.4 we get

|R1| = C(Ct)nKε‖∇g‖ ‖h‖.

Finally we get for h and g Lipschitz∫
µnK−1
ε Φ0

n g
ε
nKM

⊗nKdZnK =
∑

(ãi,s̃i)i

nK−1∏
i=1

s̃i

∫
D×Gn,0

(ãi,s̃i)i

h(z1)gnK (ξ0
nK (0))M(v1)dz1dΛ

n
(ãi,s̃i)i

+O

(
εα(Ct)nK‖h‖

(
‖g‖+ ‖∇g‖

))
.

and therefore

Gmain
ε (t) =

∑
n1≤···≤nK
nj−nj−1≤2j

∑
(ãi,s̃i)i

nK−1∏
i=1

s̃i

∫
D×Gn,0

(ãi,s̃i)i

h(z1)gnK (ξ0
nK )M(v1)dz1dΛ

n
(ãi,s̃i)i

+O
(
εαK2K

2

(Ct)2K+1

‖h‖
(
‖g‖+ ‖∇g‖

))
.

(7.10)

7.2. Linearized Boltzmann equation. Let g(t) be the solution of the linearized Boltzmann
equation:

∂tg(t) + v · ∇xf(t) = Lg(t) for (t, x, v) ∈ [0,∞)× D

g(t = 0) = g on D,
and L the linearized Boltzmann operator:

Lg(v) :=

∫
Sd−1×Rd

(
g(v′) + g(v̄′)− g(v)− g(v̄)

)
((v − v̄) · η)+M(v̄)dη dv̄

with (v′, v̄′) defined by the scattering rule (1.11).
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We can write this equation in Duhamel form: denoting S(τ) the semigroup associated with v ·∇x,

g(t) = S(t)g +

∫ t

0

S(t− τ1)Lg(τ1)dτ1.

We want to iterate this formula, but cutting trees with superexponential growth of the number of
annihilation (as in the hard sphere system): defining

Qm,n(τ)[g] =

∫ τ

0

dtm+1

∫ tm+1

0

· · ·
∫ tn−1

0

dtnS(t− tm+1)LS(tm+1 − tm+2) · · · LS(tn)g,

and for n := (n1, · · · , nk) with 1 ≤ n1 ≤ · · · ≤ nk,

Qn(τ)g = Q1,n1
( τk )Qn1,n2

( τk ) · · ·Qnk−1,nk( τk )[g],

we have

g(t) =
∑

n1≤···≤nK
nj−nj−1≤2j

Qn(t)[g] +

K∑
k=1

∑
n1≤···≤nk−1

nj−nj−1≤2j

∑
nk>2k

Qn(kτ)[g(t− kθ)].(7.11)

If g is continuous and bounded, we find the following characteristic formula for Q1,2(t)[g]

Q1,2(τ)[g](x, v) =

∫ τ

0

dτ2S(τ − τ2)LS(τ2)[g](x, v)

=

∫ τ

0

dτ2

∫
S2×R3

(
S(τ2)[g](x− (t− τ2)v, v′) + S(τ2)[g](x− (t− τ2)v, v̄′2)

− S(τ2)[g](x− (t− τ2)v, v̄)− S(τ2)[g](x− (t− τ2)v, v)
)(

(v − v̄) · η
)

+
M(v∗)dηdv̄dτ2

=

∫
G(2),0

(1,1)

g2(ξ0
2)dΛ

(2)
(1,1) −

∫
G(2),0

(1,−1)

g2(ξ0
2)dΛ

(2)
(1,−1)

where we denote as in the previous paragraph

gn(Zn) :=

n∑
i=1

g(zi).

We can iterate this construction:

(7.12) Qn(t)[g](z1) =
∑

(ãi,s̃i)i

nK−1∏
i=1

s̃i

∫
Gn,0

(ãi,s̃i)i
(z1)

gnK (ξ0
nK ) dΛ

n
(ãi,s̃i)i

.

The first term of (7.11) corresponds to the main part of Eε
[
ζtε(h)ζ0

ε (g)
]
. The second one is

treated by the following L2 estimation:

Proposition 7.5. There exists a constant C such that for any g ∈ L2(M(v)dz), and n :=
(n1, · · · , nk),

(7.13)
∥∥Qn(kθ)g

∥∥
L2(M2(v)dz)

≤
(
C(k − 1)θ

)nk−1
2
(
Cθ
)nk−nk−1

2 ‖g‖L2(M(v)dz).

Proof. The proof is given in section 4.4 of [4]. We suppose that g is continuous in order to use the
pseudocharacteristic formula, and we conclude by density.
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Using Cauchy-Schwartz inequality,∥∥Qn(kθ)g
∥∥2

L2(M2(v)dz)

=

∫
D

( ∑
(ãi,s̃i)i

nK−1∏
i=1

s̃i

∫
Gn,0

(ãi,s̃i)i
(z1)

gnK (ξ0
nK ) dΛ

n
(ãi,s̃i)i

)2

M2(v1)dz1

≤
∫
D

(
M(z1)

∑
(ãi,s̃i)i

∫
Gn,0

(ãi,s̃i)i
(z1)

dΛ
q,n
(ãi,s̃i)i

) ∑
(ãi,s̃i)i

∫
Gn,0

(ãi,s̃i)i
(z1)

g2
nK (ξ0

nK ) dΛ
b,n
(ãi,s̃i)i

M(v1)dz1

where

dΛ
b,n
(ãi,s̃i)i

:= M(v1)dz1

nK∏
i=2

(
(vεa(i)(t

+
i )− v̄i) · ηi

)
+

1 +
∥∥vεa(i)(t

+
i )− v̄i

∥∥ M(v̄i)dv̄idηidti,

dΛ
q,n
(ãi,s̃i)i

:= M(v1)dz1

nK∏
i=2

(
(vεa(i)(t

+
i )− v̄i) · ηi

)
+

(
1 +

∥∥vεa(i)(t
+
i )− v̄i

∥∥)M(v̄i)dv̄idηidti.

From (7.2) we have the bound(
M(z1)

∑
(ãi,s̃i)i

∫
Gn,0

(ãi,s̃i)i
(z1)

dΛ
q,n
(ãi,s̃i)i

)
≤
(
C(k − 1)θ

)nk−1
(
Cθ
)nk−nk−1 .

On the other hand, using the representation formula in the reverse sense,∑
(ãi,s̃i)i

∫
Gn,0

(ãi,s̃i)i
(z1)

g2
nK (ξ0

nK ) dΛ
b,n
(ãi,s̃i)i

≤ nK
∑

(ãi,s̃i)i

∫
Gn,0

(ãi,s̃i)i
(z1)

(
g2
)
nK

(ξ0
nK ) dΛ

b,n
(ãi,s̃i)i

≤ nK
∫ kθ

θ

dt2 · · ·
∫ tnk−1−1

θ

dtnK

∫ θ

0

dtnk−1+1 · · ·
∫ tnk−1

0

dtnkS(t− t2)|Lb| · · · |Lb|S(tn)g2

with

|Lb|g(v) :=

∫
Sd−1×Rd

(
g(v′) + g(v̄′) + g(v) + g(v̄)

) ((v − v̄) · η)+

1 + ‖v − v̄‖
M(v̄)dη dv̄

and

(g2)nK (ZnK ) :=

nk∑
i=1

g2(zi).

Lemma 7.6. The operator |Lb| : L1(M(v)dz)→ L1(M(v)dz) is bounded.

Proof. For f ∈ L1(M(v)dz), using the change of variables (v, v̄, η) 7→ (v′, v̄′, η) sending (v − v̄) ·
η)+dv dv̄ dη → (v′ − v̄′) · η)−dv

′ dv̄′ dη,∫
D
|Lb|f(z)M(v)dz = 4

∫ ∫
D×S2×R3

f(z)M(v)M(v̄)dzdηdv̄ ≤ 16π‖f‖L1(M(v)dz).

�
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We use now that S(t) conserves the L1(M(v)dz) norm. Integrating the times variables,∫
D

∑
(ãi,s̃i)i

∫
Gn,0

(ãi,s̃i)i
(z1)

g2
nK (ξ0

nK ) dΛ
b,n
(ãi,s̃i)i

M(v1)dz1

≤ (C(k − 1)θ)nk−1(Cθ)nk−nk−1

nk−1!(nk − nk−1)!
‖g‖L2(M(v)dz)

which concludes the proof of the proposition. �

Because ‖g(t)‖L2(M(z)dz) is decreasing, we have for ‖h‖ <∞ (we use here the weight of the norm
‖h‖ ≈ sup

∣∣M−1g
∣∣).∣∣∣∣∣

〈
h,

K∑
k=1

∑
(nj)j≤k−1

nj≤2j

∑
nk>2k

Qn(kθ)g(t− kθ)

〉
L2(M(v)dz)

∣∣∣∣∣ ≤
K∑
k=1

(C2tθ)k/2‖h‖‖g‖L2(M(v)dz)

≤ Ct1/2θ1/2‖h‖‖g‖.

(7.14)

Using all the estimations (4.1), (5.1), (6.1), (7.10) and (7.14), we finally get that

(7.15) Eε
[
ζtε(h)ζ0

ε (g)
]

=
〈
h, g(t)

〉
L2(M(v)dz)

+O
((
Ctθ1/2 + (Ct)2t/θεα/2

)
‖h‖
(
‖g‖+ ‖∇g‖

))
.

This concludes the proof of the main theorem.
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