LONG TIME VALIDITY OF THE LINEARIZED BOLTZMANN UNCUT-OFF AND
THE LINEARIZED LANDAU EQUATIONS FROM THE NEWTON LAW

CORENTIN LE BIHAN

ABsTrACT. We provide a rigorous justification of the linearized Boltzmann- and Landau equations
from interacting particle systems with long-range interaction. The result shows that the fluctuations
of Hamiltonian N- particle systems governed by truncated power law potentials of the form % (r) ~
|r/eett| ™% (near r & 0) converge to solutions of kinetic equations in appropriate scaling limits ecg — 0
and N — oco. We prove that for s € [0,1), the limiting system approaches the uncutoff linearized
Boltzmann equation or the linearized Landau equation, depending on the scaling limit. The Coulomb
singularity s = 1 appears as a threshold value. Kinetic scaling limits with s € (0, 1] universally converge
to the linearized Landau equation, and we prove the onset of the Coulomb logarithm for s = 1. To
the best of our knowledge, this is the first result on the derivation of kinetic equations from interacting
particle systems with long-range power-law interaction.
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Referenced 55

1. INTRODUCTION

In kinetic theory, a gas of particles can be modelled by a system of N particles interacting via a
potential % (-/ec). In dimension 3, the power laws %;(r) := r~%, s > 1 play a fundamental role, in
particular the Coulomb case s = 1. One of the goals of kinetic theory is the description of such a gas in
the limit NV — 00, eeg — 0. Of course, it depends on the scaling between .4 and N. Here we consider
the low density scaling, where the occupied volume Neqg? goes to 0.

In the case s > 1, a first description of such a system is the Boltzmann equation: if at time 0 the
particles are "sufficiently independent" (we do not precise the sens), the distribution of a typical particle

f(t,z,v) is a solution of the Boltzmann equation (introduced by Boltzmann in 1871 [Bol96])
Of+v-Vof= Qs(f7f)

(1) QUM = [ (M) = F)he) b0 = ) dv. d,
,71)—1—11); |[v — vy ;v v -y
T2 2 T 2 g

where the kernel by depends on the potential %;(-). The collision operator () can be interpreted as a
jump operator for the velocities.
For a power law %, with s > 1, the kernel b, is equal to

bolz,m) = |2 qu(z - m), with g,(cost) ~ K6+
for some constant K. Hence the collision kernel is not integrable near the singularity 7 - % ~ 1 (when
the collisions are grazing). We say that the Boltzmann kernel has no cut-off. However, the Boltzmann
operator Qs can be defined if functions f and h are differentiable.
In the Coulombian case s = 1, the singularity near is too large to defined the collision operator, even
for smooth functions. In 1936, Landau proposed in [Lan36] an equation describing a low density Coulomb
gas, the Landau equation:

atf"_v'vwf:CQL(fvf)

1.2 v — v, [2Id = (v — v,)®2
U2 @ =, [P 0 G ) eh) dn

RS lv—v.f?

The factor ¢ a diffusion constant. The starting point of Landau’s argument was the Boltzmann equation
(1.1) associated with the cutoff collision kernel

1
bl,a(v *U*ﬂ?) = mbl(v B 1)*,7])]].| L= <1-62°

Vs
[v—v.]

The factor m is the suitable normalisation sequence (sometimes called the Coulomb logarithm). In the
limit 6 — 0, the grazing collisions (collisions with small velocity jump) become dominant. The Landau
collision operator is the limit of these Boltzmann operators. The rigorous justification of this process was
performed by Alexandre and Villani in [AV04] (see also [AB91l, [Des92]).

One can ask if it is possible to derive the Boltzmann equation associated with %, (s < 1), or the
Landau equation, from a physical particle system. In fact, this question remains mainly open and the
only results hold for compactly supported interaction potential and on short time intervals (look at the
Section . However, it is possible to simplify the problem in order to obtain a positive answer.

A strategy for deriving the Boltzmann equation associated with the the potential %; is to split the
problem into two steps. First, we consider the truncated potential %, r(x) = x(R|z|)/|z|®, where
x(r) : RT — [0,1] is a smooth, decreasing cut-off function:

x(0) =1, x([1,00[) = {0}, X" <0.
Taking the Boltzmann-Grad limit N — 0o, Neeg? = 1 (Neeg? = (log R) ™! in the Coulomb case s = 1),

we want to recover the cut-off Boltzmann equation. In a second time, we take the grazing collision
limit R — oo to pass from the cut-off Boltzmann equation to the linearized Landau equation if s = 1
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(respectively the linearized Boltzmann equation associated to % if s > 1). Assuming that R grows
slower enough than N (we will need R = O((loglog N)'/*)), one can take the two limits N, R — oo
simultaneously.

The difficulty is that we need the validity of the cut-off Boltzmann equation on a large time interval
of order O(1) (to be compared the validity time obtained by Lanford O(1/R?), [Lan75], see the next
section). A good way to get long time results is to look at a system set initially near the thermodynamic

equilibrium (or Gibbs state): the probability to find particles with position z1,---, 25 and velocities
V1, ,UN IS
N 1 al |v; |2 i — T
K3 (2
Mseff,R(:I:l?.-.’xN7Ul7-..7UN) :zrexp _Z 2 - Z %R( j)
Nett, 2 i=1 1<i<j<N Eeff

where 2y ., r i a normalistion constant. We want to understand the fluctation field ¢! around the
equilibrium: for a test function g, we define

1 1
¢t (g)=VN (N Z g0 (0, vit (1) = Bewwe | 3 Z g (t), vie" (t))] ) :

In the previous equality, (x;° (t), vi*"(¢)) denotes the coordinates of the i-th particle at time ¢, and the
expectation is taken with respect to the Gibbs measure M, gj\efﬁ_’ r dXn dVx. In that setting, Bodineau et
al are able to describe the hard sphere system by the linearized Boltzmann equation, which is derived
considering a symmetric perturbation of the equilibrium (see [BGSR17, BGSRS21], [LB22]).

One can now write a vague version of the theorem proved in the present paper (a rigorous version is
written in Theorem .

Theorem 1. Consider a system of N particles evolving with respect to Newton’s laws, interacting through
the pairwise potential Us r(-/eer). At time zero, the particles are distributed with respect to the equilibrium
measure Mgff’R(ml, <o xn,v1, o on) dXy dV. Parameters N,eog, R are set with respect to the
Boltzmann-Grad and grazing collision scallings

csxR72179 if 5 € (0,1)
N — 00, R—o00, R= O((loglogN)1/4), and Neog? = (logR)"'if s =1,
1 else.

The diffusion constant cs (when s € (0,1)) depends on the singularity s and the cut-off function x.

_lv?
Fix g and h two test functions. Then denoting M (v) := W,
(1.3 B [cL, (062, 0] —, [ 8t )bt 0)ME) dr ay

with g(t, x,v) the solution of the linearized equation

1 :
g +v- Vg = Lo, 77 (@u(Mg, M)+ Qr(M, Mg)) if s =1,
P 0 B where Z,.g = 1
gt =0,z,v) = g(z,v) 7 (Q(Mg, M) + Qu(M, Mg)) clse.

1.1. State of the art. Now we recall some results about the derivation of the Boltzmann and Landau
equation.

In the non linear setting, the only results hold for potential % (-) supported in a ball {z € R3, |z| < R}.
In the Boltzmann-Grad scaling Ne.g? = 1, the distribution of a typical particle follows the Boltzmann
equation up to a time O(1/R?). The first derivation was performed by Lanford [Lan75| for hard spheres
(i.e. exp(—%hs(r)) = 1,>1) and King [Kin75| for more general compactly supported potentials (see also
[GSRT13], [PSS14| Denl8| BGSRS18|). The previous results have two defaults. They are valid only up to
a small time (for the atmosphere at the level of the sea, this time scale is of order 107%s), and the results
apply only to a compactly supported interaction potential. However, there is one long time result out of
equilibrium [[P89], in a setting where the dispersive effects are dominant.

For the Landau equation, the unique results hold only at time 0 (see [PSS14] Win21]): the authors
obtain the equality

(0¢f)jt=0 = —v - Ve fo + Qr(fo, fo)-
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This is not the first attempt to derive a linear version of the Boltzmann equation without a cut-off
and the Landau equation. The first proof was provided in a setting where one tagged particle is followed
in a background of fixed particles distributed with respect to the Poisson measure (see [DP99] for the
derivation of Boltzmann equation and [DROI| for the derivation of Landau equation). Later, a linear
particles setting was treated. One follows a tagged particle 1 in a bath initially at thermal equilibrium.
Hence, the one has to compute the covariance

Be e [RT (8), v (£)) g (<57 (8), vi (1))

in the Boltzmann-Grad and grazing collision scaaling. At the limit, the distribution of the particle 1
is described by the linear Landau (respectively Boltzmann) equation (see [Ayil7] for the Boltzmann
version and [Cat] for the Landau one). In her paper, Ayi does not consider interaction through the
cut-off potential %; g, but directly a long range potential % with fast decay at infinity (she needs
% (r) < O(exp(— expexp |z|*))). Note that if the linear setting is a O(1) perturbation of equilibrium, the
linearized setting (which is treated in the present paper) is a O(NN) perturbation of equilibrium.

1.2. Main steps of the proof. We present now the main step of the proof. As explained before, the
proof can be split into two pieces: first, we derive the linearized cut-off Boltzmann equation from the
particle system, and second, we pass from the cut-off linearized Boltzmann equations to the linearized
Landau equation (or the uncut-off Boltzmann). The second step has already been treated by Raphael
Winter and the author [LBW22]. The main contribution of the present paper is the treatment of the first
step, i.e. the derivation of the cut-off linearized Boltzmann equation.

This problem was already solved by Bodineau et al in the hard sphere setting [BGSRS21|. However,
they need a refined result of Billard theory [BFK9§| to control the dynamical memory effect (called
recollision). It is an explicit bound on the number of collisions that can occur between a fixed number
of particles. Such a result cannot be easily generalised to other interaction potentials, first because the
"number of collision" is not well defined (particles can overlap). In [LB22], the author provided a proof
avoiding the result of [BEK98]. It is based on a subtle conditioning of the initial data, allowing to control
locally the number of recollisions. In the present work, we have simplified the strategy, and adapted it to
particles interacting through a general compactly, supported interaction potential (see Assumption .

1.3. Modification of the scaling parameters. For a fix s > 1 and a cut-off function y : RT™ — [0, 1],
we define the parameters
€ :=¢ce/R, a:=1/R’,

and the interaction potential

|zf*
Hence we have the equality %s r(x/cer) = a¥ (x/€).
In the following, we will use €, « and ¥ because it will simplify the notation and allows to take bounded
potential s = 0.

2. DEFINITION OF THE SYSTEM AND STRATEGY OF THE PROOF

2.1. The Hamiltonian dynamic. Let T := R¢/Z% (with d > 2) be the domain. We denote D = T x R?
its tangent bundle and D™ the n-particle canonical phase space. In the following, we use the notation

Xp=(x1,- ,2,) €T, Viy = (v1, - ,vn) € R™, and z; = (z4,v;) € D.
On each D™ we construct the Hamiltonian dynamics associated with the Energy
1 o
(2.1) Kl Zn) 1= SIVal? + Vu(Xa)s ValXo) = Y. o ('9”5”33') :
1<i<j<n

where ¥ is the interaction potential and « is a normalisation constant of the potential:
%Ii = VUL%(Zn(t)) = V;,

d, _ _a - Ti — 25
Lo, Ve, 0 (Zn (1)) E;V"f/( )

(2.2) Vi € [1,n], {
i

We impose the following condition on the interaction potential



LONG TIME VALIDITY OF THE LINEARIZED LANDAU AND UNCUT-OFF BOLTZMANN EQUATIONS 5

Assumption 2.1. There exists a constant s € [0,00) and a decreasing cut-off function x € €([0,00)) N
¢2(]0,1) such that

x(lz)
(2.3) ¥(x) = F x(0) =1, x([1,00)) ={0}.
This dynamics is well defined for all times, almost everywhere in D™ with respect to the Lebesgue
measure.

2.2. Grand-canonical ensemble and stationary measure. In the following, we choose to not fix the
number of particles .4 but we define it as a random variable of expectation u (we say that we take the
grand canonical ensemble). If we choose the number of particles (the Canonical ensemble), the system
will become more rigid and the calculations harder. However, one expects that Canonical and Grand
Canonical ensembles become equivalent when the number of particles goes to infinity.

We denote 2 := | |,,~,D" the grand canonical phase space. We can then extend the Hamiltonian
dynamics to 2 and denote Z 4 (t) the realisation (defined almost surely) of the Hamiltonian flow on 2
with random initial data Z_4 (0): for A4 =n, Z_y(t) follows the Hamiltonian dynamics on D".

The initial data is sampled according to the stationary measure introduced now. The grand canonical
Gibbs measure P, (and its expectation E.) are defined on Z as follows: an application H : 2 — R is a
test function if there exists a sequence (hy,)n>o with h,, € L>°(D") and

it AN =n, Zy=(z1,-,2,) and H(Z y ) := hp(21," - ,2Zn).

Then we define E, as

2.4 E.[H(Z L [y gy ey
(24) @)= S0 [ ) G

where 2 is a normalisation constant and p is the chemical potential. The parameters ¢ and p are tuned
with respect to the Boltzmann-Grad scaling

(2.5) petlo =1,
where 0 is the mean free path. The length 0 can be interpreted as the typical distance crossed by a particle

' \

0

F1GURE 1. The first particle will meet the second one. Here v is of order 1.

The empirical distribution at time ¢ is defined as the average configuration of particles at time ¢: for
any g test function on D,

1
(2.6) mi9) = > g(zi(t).
i=1
At equilibrium, we have the following law of large numbers. Denote
(2.7) M= O
. v) = ——.
(2m)%

Proposition 2.2. For any continuous and bounded test function g : T x R? — R, for allt € R and for
any § > 0,

7 (g) - / 9(2)M(v) dz

Remark 2.2.1. The previous result is a simple corollary of the Lanford theorem and of the invariance
of the measure (see [Lan75]).

(2.8) lim P, [ > 5] =0.
e—0
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The aim of this article is to investigate the next order, namely the fluctuation field
(1L
(29 ctto) =t (2 3 o) - B0 ).
i=1

2.3. Binary collision, scattering and definition of the Linearized Boltzmann operator. Inter-
actions involving more than two particles become negligible in the Boltzmann-Grad limit.

The present section is dedicated to describing the map between pre-collision and post-collision veloci-
ties. It is called the scattering map.

Consider two interacting particles 1 and 2 following the Hamiltonian dynamic associated with J%. At
time 0, particles have coordinates (X2(0), V2(0)) with

x1(0) = ev, x2(0) =0, v1 = v and v2(0) = v,

where v € S9! and (v —v,) - v > 0.
The particles will interact on a finite interval [0, [7]] with 7 the infimum of {7 > 0, |z2([7]) — z1([7])| =
e}. The time [7] is finite and bounded by ﬁ (see Lemma . We define (v/,v',v),) as

v o= D20 g 0,00 o= (o (]) ea((7]).

In addition, it conserves both momentum, kinetic energy, and angular momentum:
(2.10) vdv, =0+l [P o R = 0P+ LR and (v —v) Av = (v = VL) AV,
with A the cross product. We deduce that
(2.11) (0 =) -] = (0 —ol) - V]

Definition 2.2.1. The scattering application
(2.12) ot (v, v,0.0) = (V0 0))

is a local diffeomorphism which sends measure dvdv.dv to dv’dvl dv’.

FIGURE 2. The scattering between two particles.

We define the linearized Bolzmann operator in the King’s form:

(2.13) Zugo)i= [ (o) + gle) ~ 9(0) — g(0)) (0~ v2) v} M(v2) dv .
SxR
where we apply the scattering with interaction potential % (-), and £, := Luy.
This operator describes the variation of mass due to changes of velocity of colliding particles. The
operator .%,, is a self-adjoint non-positive operator on L?(M (v) dz).

Remark 2.2.2. We say that the Boltzmann operator £y, has a cutoff because we cutoff the long range
interaction.
There is another interpretation of this property. For parameter (v,v.,v), we can define the vector 7

such that
;v v — v ;_vtue ju—u

D) D) > Uy D) 9 UE
and bo (v — ve,n) (called the collision kernel) the Jacobian of the application v — n:

(v —v4) V)y dv = ba(v — vy, m)7.
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We say that the Boltzmann operator has a cutoff because for any v — v, the following bound holds

/ba(v — v, m) dn < 0.

2.4. Convergence to the linearized Boltzmann equation with a cut-off. We recall that we have
divided the proof of Theorem [I]into two steps. The first step is to take the Boltzmann-Grad limit p — oco.
As we want to take the limit & — 0 in a second time, we need a quantitative rate of convergence.

We define the norm

(2.14) lgllo := sup [M " (v)g(z,v)| and gl == Y [V*gllo-

z,v)eD o<k

Theorem 2. Let g and h be two test functions €1 (D), with ||g|l1,||h]l1 < co. Then there exist three
constants C > 1, C' > 1 and a € (0,1) independent of g, h such that for any € small enough, T > 1,
0 < mrz, a,0 € (log|loge| ™1, 1),

(2.15)  sup
t€[0,T)

B [C000)] ~ [ hl2)galt2)M(2) d2

/6
T3/291/2 T 2,2 (CT 2"
<c (cDQ T C IR VAT

where g, (t, 2) is the solution of the linearized Boltzmann equation

1
atga(t) +uv- Vmga(t) = Egocga(t)y
ga(t=0)=yg

The theorem is valid in any dimension d > 2. However, taking the grazing collision limit « — 0 has a
physical meaning only in dimension 3.

This theorem is the main purpose of the present article. We conclude the proof of Theorem [2] by
Estimation , and we outlined the main step of the proof in Section

(2.16)

2.5. Derivation of the linearized Landau equation and Boltzmann equation without cut-off.
The dimension is fixed at d = 3 (we think that it is the most physical case). In a second time, we want to
take the weak coupling limit a — 0, @ — 0. It is the abstract of Raphael Winter and the author’s result
in [LBW22].

The case where the singularity T% of the potential is bigger than the Coulomb’s case (s > 1).
In the limit @ — 0 we will only see the effects of the singularity at the origin. We define the power law
potential %, (r) := 1/r®. It is natural to guess that

(2.17) 0 L L,

which is a linearized Boltzmann operator associated without cutoff (see Appendix [Alfor a rigorous defi-
nition of .#, and a justification of the scaling @ = a?/%).

Remark 2.2.3. We say that the Boltzmann operator Ly, has no cutoff because particles can interact
at long range and the collision kernel bs(v — v«,n) associated to the potential 1/r° (defined as in Remark

s mot integrable in the n variable.

The Coulomb case s = 1. It is not possible to define the Boltzmann operator for the Coulomb potential.
However, we can prove (see [LBW22]) that for g a test function smooth enough,

1
2.18 — %9 — ey X
(218) a?|log o oo 9
where ¢y = 1 is a diffusion constant and % is the linearized Landau operator
(2.19) Hg(v) = iv / Pi, (Vg(v) — Vg(v.)) M (v)M(vs) dv
' RO e o—od " ? g )

Treat now the case lower than Coulomb s € [0,1). For these potentials, the scaling and the diffusion
change:

(2.20) o=a? 2rey = o [ 8k BB d,
87T R3
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where & is a unit vector, and we use the convention ¥ (k) = Jgs €7 =¥ (x) da for the Fourier transform
of ¥, and

1
(2.21) ﬁfag " cy g
The previous discussion can be summarised by the following theorem:

Theorem 3 (proven in [LBW22]). For g : D — R smooth and ¥ respecting Assumption 77, there exists
a positive constant C such that

C
-1
(222) ||Ds,a$(¥g - gOOgHLz(M(U) dz) < m”g”i‘)

where L5 and 05 o are given by

Singularity Mean free-path Limiting operator
s>1 V50 1= a?/s Lo = Loy,
s=1 05,0 1= a?|loga] Lo =K
goo = C'fo
2 1 SN2 (1 [2
s<l1 Os,0 1= = Toa2 - (k- en)|k|*|7 (k)" dk

In addition, defining g (t) the solution of
atgoo(t) +v- vacgoo(t) = googoo(t)v

2.23)
( 8o(t=0)=g
and gq the solution of (2.16) with 0 := 0, 4, the following convergence holds
(2.24) <o AO* €oo in L (RY(L?(M(v) dz)).
a—

Combining it with Theorem [2| we obtain the main theorem:

Theorem 4. Let f,g € L*(M(v) dz) be two test functions.
Consider a potential ¥ such that the Assumptions are verified and ¥ (r) ~ Los>1.
r—0

Fiz the scaling pe®v5,o = 1. Then we have the following convergence result: for all t > 0,
B [C0CW] [ et M) d:
a—0 N
a>log|loge|™ 4

where goo(t) is the solution of the equation (2.23)).

Proof. First, the space E := {g: D — R, |g||, < oo} is dense in L?(M (v dz)).
Since the two bilinear operators

(h.9) = B- [0 (1) > [ hl2)glt )M () a2

are continuous on L?(M (v) dz) (see [BGSRS21]), it is sufficient to take g, h € E.

Set T := max(1,t). Fixing 0 := m for g € (0,1) small enough,

T3/201/2 T 5,0 (CT
-7 oT?et [ X
C (C az,a * 9 <00678)

9T /8

sa/2> = O(s“/4).
Hence Theorem [2 provides

Ee [CH(9)¢2 (h)] Z/h(Z)ga(taZ)M(v) dz + O [lglllny).

Theorem [3] provides the convergence

/h(z)ga(t, 2)M(v) dz — /h(z)goo(t, z2)M(v) dz.

This conclude the proof. O
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2.6. Central Limit Theorem for the fluctuation field. One can ask if it is possible to go further
in the description of the fluctuation field. In the hard spheres setting, it is possible to prove a Central
Limit Theorem for ¢!.

At time 0, one can show that ¢ converges in law to the Gaussian field ¢° define by

Definition 2.2.2. Let (° the Gaussian field on D of covariance
E[C(C()] = [ h:)g:)0(0)dz

E[¢°(9)] =0

It is possible to generalize this result to the time dependent process (see [Spo81] [Spo83, BGSRS20] for
short time result and [BGSRS22al for long time result).

(2.25) Vf,g € L(M(v)dz),

Theorem 5 (Bodineau, Gallagher, Saint-Raymond, Simonella, [BGSRS22al). Consider the hard spheres
system in d-dimensional torus T? (d bigger than 3) and fix the Boltzmann-Grad scaling pe®' = 1.
The fluctuation field (C.)¢>o converges for al time to ¢, the Gaussian field solution of the fluctuating
Boltzmann equation

dt: td dt
(2.26) { ¢ =Lpldi+al”

Ct:o _ CO

The field £t is the mean free Gaussian field of covariance

E

T T
/ h(z1)E™ (dzl)drl/ h(z2)&™ (dZQ)dTQ‘|
(2.27) 0 0

1 T
= 5/ dT/du(zl,ZQ,U)M(Ul)M(v2)AhAg,
0

where
dp(21, 22,m) = 0zy =2, b((v1 — v2), ) dz1d22dn,
Ah = h(v]) + h(vh) — h(vy) — h(vs),
and b((v1 — v2),n) the hard sphere collision kernel.
As the particle dynamics has a memory (it is a purely deterministic process), it does not preserve the
initial Gaussian structure. In [BGSRS22al, the Gaussian property is proved by checking asymptotically
the Wick’s law for the limiting field.

One can asks if such a theorem still applied in a system of particle interacting through a more general
potential ¥'. For the moment the question is still open.c

Notations. For m < n two integers, we denote [m,n] := {m,m+1,--- ,n} and [n] := [1,n].
For Z, € D", and w C [n], we denote

Zy = (Zw(1), " 5 Zw(lwl))

where w(7) is the i-th element of w counted in increasing order.

Given a family particles indices {i1,--- ,i,}, the notation (i1,--- ,4,) indicates the ordered sequence
in which Vk # [, i, # ;. In addition
o ln = (7;17 e 7in)7
o for m <mn, i, = (i1, -+ ,im), and more generally for w C [1,n], i, = (iminw: " " » maxw)s
o for 0 <m < mand (i1, - ,im), > denotes the sum over every family (4,41, ,i,) such

(fm41,"50n)

that for 1 <k <1 <mn, i, # 1, and
i, (31, 4in)
e Z;, :=(zi, - ,2i,), as ordered sequence.

We also precise the sense of LandaLﬂ notation: A = B 4+ O(D) means that there exists a constant C
depending only on the dimension such that |4 — B| < C D.

lfrom Edmund Landau and not Lev Landau.
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When we performed estimation, C' is a positive constant (which can change from a line to another)
and the final time ¢ is supposed to be bigger than 1 (in general, we prefer to denote 7 any intermediate
time).

Finally, let h,, be a function on D™. We denote

Ee [hy] =

Loy, ]
(11, Jin)

and the associated centered function deﬁned on %,

W) =k 5 () -Bn],
Zl7 s n
2.7. Strategy of the proof Theorem |z|. The proof of Theorem [2| follows a path similar to [BGSRS21]|
and |[LB22|, which were written in the case of hard spheres.
As ¢%(g) is a mean-free random variable on 2, we can write

(2.29) E- [¢(n)¢(9)] [Zh ] .

We see that the function h is evaluated at time ¢ whereas the function g is evaluated at time 0. The
first step of the proof is the construction of a family of functionals (®1,,)1<n, ®f, : L=(D) — L>(D")
such that for any initial configuration Z 4 € 2,

N
(2.29) Zh(m =YY @l [hl(2Z;, (0)).

n>1 i,
The first part of Section [3|is dedicated to give an explicit expression to the <I>§,n
1
(n—1)!

where 21(t, Z,, history) is the final position of particle 1 in the pseudorajectory of prescribed history.
A pseudotrajectory is the path of a finite set of particles. This set is divided into disjoint clusters.
When a particle meets another one, they interact if they are in the same cluster and ignore each other
else. In the both cases, this meeting creates a link between the two trajectories. The history of the
pseudocharacteristic is a discrete parameter describing the links between the particlesﬂ In the preceding
formula Lpistory checks that the pseudotrajectory is possible, and o(history) = =1 is a sign link to a
splitting of the collision operator %, into a positive and a negative part.

(2.30) o1, [h](Zy) = Z h(z1(t, Zy,, history)) Lnistoryo (history)

history

A

t,,

Particles interacts-:*=" " . .
. ::::-Particles do not interact

0,,

F1GURE 3. Exemple of pseudotrajectory for four particles. Note that there are two
clusters of particles and o (history) = 1.

The decomposition (2.29)) can be interpreted as the dual formulation of the pseudocharacteristic devel-
opment first used by Lanford in his original proof [Lan75] for the hard sphere system and later adapted by

2An history can be constructed as first a partition into clusters (p1,- -, pr) of the set of particles and of the graph of
vertices [r] and with the edge (i, j) if one particle of p; meets one particle of p;. The sign o(history) is 1 if the number of
edges is even, —1 else.
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King for other potentials [Kin75]. However, the King decomposition makes a distinction between binary
interaction and interaction with more than two particles. In order to avoid this feature, we prefer to use
the dynamical cluster introduced by Sinai [Sin72] in a different setting and later by Bodineau et al. for
hard spheres in Boltzmann-Grad scaling (see [BGSRS22b]).

In the classical derivation of the Boltzmann equation (and here of the linearized Boltzmann equation),
there are two main steps. First, we need to prove that each term

(2.31) —2 Z of (0)¢2(9)

converges to its formal limit. It is defined by the asymptotic of the Hamiltonian dynamics when particles
become punctual.

The main obstacles to this convergence are multiple interactions (interaction between more than three
particles) and recollisions. A recollision is an interactions between two particles ¢ and §, beginning at
time 7 and such that we can find a sequence a sequence of particles ¢ = q,q2, - - - , ¢ = q with ¢; meeting
@;+1 before time 7. Recollisions become rare in the limit £ — 0 and are impossible in the limiting process.

The second step is an a priori bound of the terms of the series . An L' estimation is used in the
classical derivation of the Boltzmann equation (see [Lan75, Kin75, [(GSRT13, [PSS14]). It is valid only for
short times. The linear version of the problem (one tagged particle followed in a background initially at
equilibrium) is only a O(1) perturbation of equilibrium. Thus, the L' bounds are valid for all time (see
[vBLLS80, BGSR16], [Ayil7, [Catl8]). The linearized setting is a O(u) perturbation of the equilibrium
and L' bounds are no longer sufficient to reach long time (Spohn used them to describe the fluctuation
on short time in [Spo81]). To gain estimation on a longer time interval, it is convenient to consider L>
estimates (see [BGSR17, BGSRS21, BGSRS224, [LB22]). Indeed, because (?(g) is a mean free random
variable, for any intermediate time ¢4 € [0, ],

[ ,,Z(I)t Eh)(Zi (£:))C0(g) ’E [ ”*’<I>t ts[h}(zﬂ(ts))Cg(g)”

. 2.1 9 1
<E [ (@0 1z (1) | B ()]
2n—1 (Gt—t 213 0 213

<E [t (84012 0)) ] B[ (0]
using a Cauchy-Schwartz inequality and the invariance of the Gibbs measure. Hence, it is possible to
begin a development along pseudotrajectories and stop at time ¢5 when it becomes "pathological". Then
we can ignore what happens in the time interval [0, t].

We need to bound the EE[(fi)tl_nt [h])2]7 which is linked to the estimation of the integrals (see the
Section

(2.32) Vm < n/|¢>§j,fs (W](Z0) @45 R (Z—m2n—my) | €= 7Cn=mF2nm) A Zy, .

1,n

Unfortunately, we do not know how to take account of the signs o(history) in the bound of <I>t1;f
Thus, we are reduced to counting the number of histories needed to describe the pseudotrajectories with
n particles. A useful tool is the collision graph on [r,7']: its vertices are the particles 1,---  ,n and it
has an edge (q,q) for any collision involving particles ¢ and ¢ happening between times 7 and 7. If we
forbid multiple interactions and recollisions, the collision graph on [ts,t] has no cycle. Hence, we only
need n — 1 parameters to decide for each collision if particles interact or not.

We now introduce two samplings, one to control regular collisions and one to control recollisions and
multiple interactions.

The first sampling has a relatively large step 6 := for some constant C' large enough). We

cTog ozl (
stop the pseudotrajectories development at time t — k6 if there are more than 2% particles involved in the
pseudotrajectory. Hence, the number of particles at time 0 remains controlled.

The second sampling has a shorter step, § := £'/12. We stop the expansion at time t, 1= t — k¢ if
the pseudotrajectory has at least one recollision on [ts,¢] (but no recollision on [ts + §,¢]). Imposing
recollisions create an additional geometric condition, and thus, an extra-smallness gain.

However, we still have too much possible history. To reduce their number, we separate the pseudotra-
jectories in two categories. In non-pathological pseudotrajectories, the collision graphs on [ts, ts + 6] and
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on [ts + d,t] have both no cycle. We are in a setting close to the case without recollision, and we only
need C™ parameters (C' a fixed constant) to describe the histories.

We explain now how to treat the pathological recollisions part. We condition the initial data Z_s (0)
such that on each interval [kd, (k + 1)d] a particle can intemciﬂ with only a finite number of particles
~ (we will take v := 12d). Hence, for a pseudotrajectory zi(t, Z,, history), the history has to describe
first a partition of [n] into small clusters of particles that interact together on [0, ] and how they really
interact. As the size of each cluster is uniformly bounded, the number of histories is at most of order C™
for some C' > 1.

t -

FIGURE 4. An example of one pathological pseudotrajectory (on the left) and a non-
pathological one (on the right)

The paper is organised as follows: In section [3] we give a proper definition of histories and we use
it to construct the functionals <I>t1,n. Then we implement the two samplings. This allows to decompose
Ec [¢t(h)¢2(g)] into a main term, plus error terms of different nature: a development on pseudotrajectories
(i) without recollisions (bounded in Section [f]), (ii) with non-pathological recollisions (bounded in section
[7) and (iii) with pathological recollisions (bounded in Section [8). The estimation of the error terms
requires standard L2(P.) estimates based on static cumulant decompositions, which are reported in
Section [4 Finally, the convergence of the main term is proven in Section [} Annex [B|to the analyses of
trajectories leading to recollisions of multiple interactions.

3. DEVELOPMENT ALONG PSEUDOTRAJECTORIES AND TIME SAMPLING

3.1. Dynamical cluster development. For any test functions h and g : D — R we want to compute

1 N N
E. [¢{(h)¢2(9)] = ;Es Zh(Zi(t))Zg(Zj(O))

We have a sum evaluated at time t and a sum evaluated at time 0. In order to compute it, we have to
pull back the second sum to time 0: we want to construct a family of applications ®f ,, : L>(D) — L>(D")
such that for almost all initial data Z_4(0) € 2

hzi, ()= Y @ ,[h(Z; (0)).
n>1 (g, ,in)

More generally, we will construct a family of functional ®}, , : L>°(D™) — L*(D") (with m < n) such
that for any test functions h,, € L>(D™),

hn(Zi, (D) =D Yl alhl(Zy, (0)).
N2>1 (g1, 40n)

Remark 3.0.1 (Comparison with the hard sphere setting). In the hard spheres setting, a tree pseu-
dotrajectories development is used as it comes directly from the BBGKY hierarchy (see for example
[Lan75l [PST5, [BGSRS21), [LB22]). We begin at time 0 with n particles, and at each collision, we can
remove or not one particle to end at time t with m particles. However, in the case of physical potential,
writing the BBGKY hierarchy is difficult as particles can overlap, and there can be interaction between

3the meaning of interact will be precise in definition m
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more than three particles are possible (see [Kin7h, [GSRT13, [PSS14] for a description of the BBGKY
hierachy). Hence, we will use a different kind of pseudotrajectory development called “dynamical cluster
development” (see [Sin72, [PSW16, BGSRS22b), [Grab8|, from which we take inspiration,).

Fix A C N a finite set of particles. We denote by Z*(7) = (X*(7),V*(7)) the Hamiltonian trajectory,

linked to the energy
v >  « Ty — Tg
%(ZA) = E ; + 5 E 4 = - g

qeEA 4,GEX
q9#q

of the particles A (isolated of the other particles) with initial data Z*(0) = Z\. For any subset A C )\,
we denote Z3,(7) is the trajectory of particles X' in Z*(7).

Definition 3.0.1. Given Zy € D, we construct the graph G with vertex A and (q,q) € A% is an edge if
and only if ¢ < @ and if there exists a time T € [0,t] such that

Ir € [0,¢], XQ(T) —x;-‘(T)’ <e

We say that Z*(t) form a dynamical cluster if the graph G is connected. We denote M\\((Zy) the
indicator function that the trajectory Z*(t) forms a dynamical cluster.

In the same way, for w C A\, we say that Z*(7) form a w-cluster if, in the collision of Z*(7), all the
particles are in the same connected components of G that one of the particles of w. The function Z&‘l‘;\‘ (Z))

is equal to 1 if ZM(T) is a w-cluster, 0 else.
Remark 3.0.2. In the following, we consider that all the graphs are unoriented.

Definition 3.0.2. We say that trajectories Z) (1) and Z* () (with AN X = 0) have an overlap if there
exist a couple of particle (q,q') € A x X' and some time T € [0,1], such that |x} (1) — X;‘:(TN <e. Then we
denote A\ ~ .

For (Zx,, -+ ,2Zy,) € H;Zl DN initial data, we look at the indicator function that for any i # j,
Z (1) and Z% (1) have no overlap. We can expand it as

H (1 o ]lxi,%Aj) - Z Z H _]lxi%j H (1 o ]lxihj)'
1<i<ji<1 wC[1,l] Ce€(w) (i,5)€E(C) (i,5)€(w°)?
(31) lew i#£j
::@IW\(ZM’Z*“:@)"”’Z*w(\wD)

We have defined (@;); the cumulants of the overlap indicator functions.

We make a partition of 2 depending on the way particles interact during the time interval [0, ¢]: fixing
A €N and i,

1
> ho(Z, () A (Zo) [T A (Za) [ (- L2,)
1 i, CA1 i=2 1<i<j<1
Qa2 ezt

M

hm(Zi,, (1)) =

m

1

Vs _ 1
:Z Z hm(Zz,,,L(t))AiT(Z,\l)HZ&|Ai|(Z,\i) Z @\,(Zy,)

1=1 i, CA1 =2 wCl[1,]]
Az, 7,\1)e9’;§1 l€w
< [ - L, 2,)
(1,§)€(w°)?
7]
where we have denoted 2], the set of the unordered partitions (p1,-- - , p,) of the set w.

We make the change of variables

LAy 5 A) W) (p,ll, (s an) o, (Xl,.-. ,Xl2))
where

p = U Aiv I =], I :==1—|w|, (A1, ,A) = (Aj)jewe and </~\17"' ;:\12) = (N)jew -

1EW
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The set p is the set of particles linked to 4,, via a chain of interactions or overlaps. We get

him(Z;, (1))

m

ol 1
by Ly,
= Z Z Z hm <Z£:L (t)) Ail (Zj\l) H AI/_\i\ (sz) @11 (lea' e 7Z5\11)
i, Cpli=1 4, CA1Cp =2
[CYRE )\11)6911 ! ¢
P
DD HAI/\ (Z5) I (=145
1y i= . c\2
L=1 (R Ay )e iz =1 (w)ii(;_u )
The second line is the sum over all possible partitions (5\1, e ,5\12) of p° of the indicator function that

they are effectively the dynamical cluster of the initial data. Hence, it is equal to one. We identify the
n-th dynamical cumulant as

q)fn,n[hm](zn) : , Z Z Z h [m] )@Z<Z)\17"' 7Z/\1)

(3.2) 1=1 [m]CA1C[n] Az,

FI1GURE 5. Example of trajectory in a dynamical cumulant. We want to follow the
particles {1,2,3,4}.

We can now write the dynamical cluster expansion:

Theorem 6. For almost all Z/V € 9 we have

(3.3) . =Y Y ol [l (2, (0).

n>m (1m+17 »ln)

Definition 3.0.3 (First type of pseudotrajectory). In the following, for a givenm <n, A= (A1, -+, \1) a
partition of [n], we denote Z(t, Z,, A) the trajectory of the n particles following the Hamiltonian dynamics

linked to
1

%(Zn) = Z H, (ZM)-

=1
We define now the notion of collision graph:
Definition 3.0.4. Fiz m < n, collision parameters A :== (A1,--- , A1) and an initial position Z, € D™.
We construct the collision graph with vertex [n] and with labeled edges of the form (i,j)r s, T € [0,1],
s € {£1}. The edges (i,7)r,s is in the graph if
e TE (O,t), |Xi(7—7&) - Xj(77&)| =6 (Xi(Tvé) - Xj(Tvé)) : (Vi(T’A) - Vj(TvA)) >0,
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e or7 =0, |x(0,A) —x;(0,))| <e,
e s=11ifi and j are in the same N\, s = —1 else.

(TQ,f)

(76, +)

(74, 4+)

FIGURE 6. The collision graph link to the pseudotrajectory of Figure

Remark 3.0.3. Fiz (A1, ,A¢) a partition of [n]. Using Penrose’s tree inequality (see [Pen63, BGSRS20,
Jan| ) the cumulant function @, (Zx,,- -, Zx, ) is bounded by

(34) |@n(Z)\17"' aZAn)| < Z H ]lki:)\]
TeT([4)) (i,5)eT

where T ([]) is the set of simply connected graph on [¢]. The case equality is reached, so we cannot expect
a good L™ bound of @,,.

We introduce another parameterization of the pseudotrajectories to avoid this difficulty.

3.2. Conditioning. We describe now the conditioning used to control the pathological recollisions de-
scribe in the Section

Definition 3.0.5 (Possible cluster). Let Z, € D" an initial configuration. Consider wy,--- ,w, a family
of subsets of [r] such that

P

U Wi = [7’],

i=1

and (N)i<p = (A}, ,)\éi)igp a family of partitions of w;. We denote ¥; the collision graph of the
pseudotrajectory Z(t, Z,,, ;) on the time interval [0,0]. The graph ¢4 is the merge of all the ;.

We say that Z,. form a possible cluster if there exist some (w;)i, (A;)i such that the graph ¢ is connected.

Let v > 0 be an integer depending only on the dimension, § > 0 a time scale, and V > 0 a velocity
bound. We construct Y. C 2 the set of particle configurations such that for any time 7 € {0, 6,24, - -,
t}, there is no possible cluster of size bigger than + at time 7, and inside any subset of particles w C [1, 4]
whith less than v elements, ||V, (7)||* is bounded by 1V2. We have the following bound on the measure
of the complement of T.:

Proposition 3.1. There exists a constant C, depending only on v and on the dimension such that
t
(3.5) P.(Y2) < Oy (W + ,tﬂe’w/“) .

Proof. We take the notation of the definition If Z, is a possible cluster, we consider (w;);, (A;)i
such that the graph ¢ is connected. We consider the first collision (g, §)r s such that for any 7" > 7,
the graph ¢ without the collisions after 7’ is still connected. Hence, the graph ¢ restricted to collisions
happening during [0, 7] has two connected components, w; and ws, and Z,, and Z, are both possible
clusters. We conclude that it is possible to find a @ C [r] with |@| > [§] such that Z, is a possible
cluster.

o 2040
P.(r2) < Y E Z = > 1z, k6 terma + Z D T
k=0 n— 'y+1 (11’ < in) dlstance cluster (21’ < in)

2(v+1)

t |
_ ®n - n ®Rn
< 5 g !U / Z,, form a M dz, + n§:1 TL!M /JIHV;V/HZVM dz,

n=+1 distance cluster
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Using that (see Lemma B.3))

(36) /]l Z, forma M®n dZn S Cv/f&_n+16n_l7

possible cluster

V2
(3.7) /LW}«HZV Men dz, < CnefvT

we obtain the expected result.
We used that the Gibbs measure is time invariant. O

Hence, if we fix § := ¢'/12, V := |loge| and fix v = 24d, P.(T¢) is O(c?).
3.3. The main part of the cumulant. We define three kinds of pathology for the pseudotrajectories.

Definition 3.1.1. Fiz m < n, collision parameters (\1,--- , A1) and an initial position Z, € D™.
o There is an overlap if there are two particles q,q' and a time T € 6Z N [0,t] such that |x4(T) —
xg (7)] < .
o Fixz a time T and particles i;,---ip. We define a graph G™ with vertex {i1,-- i}, and where
(ia,ip) is an edge if and only if

Xia (T7 A) - Xib (Ta A) S g.

There is a multiple interaction between i;,- - iy at time 7 if G™ is connected.
o Fix Z, € D™ such that there is no multiple interaction during [0,t].
We say that there is a recollision if the collision graph has a cycle.

These pathological cases are negligible in the limit ¢ — 0. Hence, we can consider them as an error
term.

In the following we define @&fn as the part of @fn!n with only non pathological pseudotrajectories

@M%J(Z@Fﬁz Yo Y mm@mEX)@Zy - 2y)

" 1=1 [m]CA1Cn] (A2, A1)
ive
1

1
XA{T;” (Z)\l) H A|)\,| (Z)\i)]]-no pathology -
=2

Forgetting the pathological cases allows us to consider a simpler parametrization of the pseudotrajec-
tory. We construct the graph G by removing the edges (4, j)r s where ¢ and j are in [m]. The edges of G
can be ordered: (ig,jr)r,.s, With 71 < 79 < -+ < 7,_y, (the 7; are disjoint for almost all initial data).

We can completely reconstruct the pseudotrajectory by considering only the sequence s1,---, Sg—m
and the set of tagged particles [m)].

Definition 3.1.2 (Second definition of pseudotrajectory). Fix m < n, an initial position Z, and pa-
rameters (Sg)k<n—m € {£1}"™™ and w C [n] with |w| = m. In order to construct the pseudotrajectory
Z(7, Zpnyw, (8k)k), we need an auziliarry an auxiliary function ¢ : [0,t] — N, which is increasing, constant
by part and left-continuous function.

At 7 =0, we set Z(0, Zp,w, ($g)k) := Zpn and (0) := 1.

Suppose that the pseudo trajectory Z(-, Z,,w, (sg)r) and v(+) are constructed in the time interval [0, 7].
At time T particles i and j meet, i.e.

(1) = x;(T)| = & (xi(7) = x3(7)) (vi(7) = v;(7)) > 0.
If (i,7) € w?, the two particles interact and we fix L(7+) := (7). Otherwise, we fix (7)) := (1) +1 and
we look at s,(y. If s,(ry = 1 the two particles interact: they follow on [r, 7] the dynamic

1 Xi — X,
. _ . _ ‘7
X; = Vi, vy = =V )
€ €

-1 Xi — Xj
O e i
xjfvj,vjf—g”f/ .

e

If s,(zy = —1 the two particles ignore each other: on [t,77] we have
{Xz =V, Vl :0,

Xj :Vj, Vj =0.
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In both cases, we define 77 > T as the fist time bigger than T such that
|xi(r+) —Xj | =g, (xi(7'+) — xj(7'+)) (vi(TJr) — vj(7'+)) < 0.
We denote %t , D" the set of initial parameters such that the pseudotrajectory has a connected

collision graph and has no multiple interaction, recollision nor overlap. Hence, on % (s © D™, the
previous construction has no ambiguity.

We can reconstruct the partition (A1, - -, A1) for given (s;)g<n—m. We define the graph G as a subgraph
of the collision graph ¢1% by removing the edges of the form (i, ), _1 (we keep only the interaction).
The cluster A; is the union of the connected components in G of the particles [m]. The (Mg, -+, A1) are
the other connected components.

We have the following equality

1
(3.8) @%n[hm](Zn) = m Z H i ]l‘%zsmc b (Zim (75 Zny [M], (5k)k))
5k)k<n m i=1
We denote
(39) (Pr>n7,tn = q)fn,n - (I)%zfn

3.4. Tteration of the pseudotrajectory development. The construction of Section is efficient
over a short time interval. To raise long time result, we need to iterate these kind of pseudotrajectory
representations and to compute sums of the form

Z q)n1,n2 (I)?Lg(sn1 [h’no](zi

7712

)

n2

where ng < n; < ny are three integers.

Remark 3.1.1. In the usual framework, the pseudotrajectories have a tree (see for example [BGSRS21],
BGSRS22al [LB22] ): there are more and more particles as we go backward in time. Hence, the development
has naturally a semi-group structure, and it is straight-forward to continue the development.

In the present discussion, the pseudotrajectories have a graph structure: particles do not disappear.
Hence, we need to work to iterate the process.

t

04
FIGURE 7. On the left a tree pseudotrajectory, on the right a graph pseudotrajectory.

We need a new definition of pseudotrajectory:

Definition 3.1.3 (Third definition of pseudotrajectory). Fiz m < n. For a family of parameters
(w1, w2, (8K)k<n—m) Withwr Cwa C [n], lwi| =m and (sk)k<n—m € {1}, we define Z(t, Z,,, w1, w2, (Sk)k)
as

o for T <,

Z(T7 Zna wla (JJQ, (Sk-)k:gn—m) = Z(Ta Z’r‘HwQ) (Sk‘)kg’nf‘wﬂ)?
o forT >4,
Zw2 (Tv Zn7w17w27 (Sk)kgn—m) = Z(T - 63 Zw2 (5),‘”1; (Sk)n—|w2|<k§n—m)7
and for all i € [n] \ wo

24(7) 1= (x:(6) + (7 = 8)vi(5), vi(6)).
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Remark 3.1.2. Note that the particles in [ng] \ wo are virtual since time ¢: they do not interact with
any other particle.

We define the collision graph 419 as before. We define G[10,6] the subgraph of (%4 with edges
{(i,5)- e 911, 7 €0,0]},
and for T € [0,t] the graph G[QT’t] the subgraph of 4% with edges
{G,5)r €919, 1 € [r.1], (i,5) € wi}.
An admissible initial data is such that G[lo’é] and G[Zé’t] have no cycle.

Definition 3.1.4 (Semi-tree condition). Fiz t and § such that t/6 = K € N*, parameters (wy,ws,
(Sk)k<n—m) and admissible initial data Z,, .

We define for k € [0, K[ the sets wy, the connected component of wy in the graph G[Qtfm’sﬂ. The
graph G[Qé’t] checks is a semi-tree condition if the edges of G[Qt_ké’t_(k_l)é]
(i,4) € @ \ wi_;.

We denote %!

wi,w2,(sK)k

are of the form (i,j). with

the set of admissible initial data such that G[;’t] verifies the semi-tree condition.

Fix ng < n; < ny and a test function h,,. We have directly

) 1)
q)%hﬂz °© (b(r)L,o,nl [h’ﬂo] (ZTL2>
1 n2—no

= Z H Sk hno (Z[no](2(5, ZnQ, [no], [nl], (Sk)k)) ]lg;t
k=1

(ng —n1)Y(n1 — ngp)! [nol.ln1l. (kg

($k)k<ng—ng

and
= (2 —n1)!(n1 —no)! B A A N
Z (Tl “n )l Z ni,mo © no,nl[ no]( [n1]» Zw\[n1]» [nz]\w)
ni=no 2 0/): [no]CwC[nz]
|w|=n1
1 n2—no
=Gt 2 LD sehu (20028 Zuss Inol o, (0)) Baty -

" [no]CwC[na] k=1
(Sk)kgnz—no

Remark 3.1.3. We have removed overlap in order to make this equality direct.

51 4 73 6 2

FIGURE 8. Here the pseudotrajectory checks the semi-tree condition, with w; = {1},
w1 = {1,2}, we = {1,2,3,4} and w3 = {1,2,3,4,5,6}. In the picture, when the
trajectory of a particle is a dotted line, it does not overlap nor interact with any other
particle.
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We separate %fn0]7w7(3k)k into two pieces: f%’;’ot]’w’(sk)k where the collision graph ¢[% has at least one

cycle and % where ¢[%4 has no cycle.

[nol, Wv(sk)k

For Z,, € %’ o (50)87
reconstruct the pseudotrajectory In addition, its collision graph checks the semi-tree conditions. Fixing
the parameters (si)x, the sets (%&O] (510K )w are disjoints, as w® is the connected components of [ng] in

there are exactly no —ng collisions in the collision graph, and w is not needed to

G[;’t]. We denote 22" e the set of initial data whose pseudotrajectories have no recollision and check

[nol,(sk)k
the semi-tree property:
0,t L 0,t
P = U Pl
[no]CwC[n2]

We define now the functional

n2—no

1
0,t —__ -
(3.10) Wiy ma (o] = (ns — no)! > [T s o (Zpnal (8- [n0]: (s1)0) 18 e
(8k)k<ng—ng k=1
1 n2—no
3.11 >t o[k, ]i= g (Zine (t, -, [no), 1,5 .
( ) nomz[ o] (TLQ *nO)! Z H Sk 0 o [’no] “ ( ) )) [>no] w,(sp)k
[ro]CwCln2] k=1
(8K)k<no—ng
We obtain
5 28 5
Z Z (b’ﬂl no ¢910 ni [hno](zl‘nz) = Z \1191,0271’7,2 nO Z, + Z q’;o?ng 7,,'2)'
an ni=no inz tny

The construction can be iterated: Vk € N

n2
Do D U o ¥ [ = 2V o) (Zi,,) + D G T (2 ).
ni=ngo

iy in, i,

The functional W%’ are introduced to implement the sampling: for ¢t > 2§ and Z_4 € Y.

m,n

Zh 2:(1) = 3N @V (h)(Zy, (- 8) + > > 7 h](Zy, (¢~ 6))

n>1 i, n>1 i,

= Z(@%i/\lf“ h)(Zs,, (t —26)) + @i:?/\lf“[hxz%,@—k6>>)

n'>n>0 i,
+ N 702, (- 0))
n>1 i,
= U0t [h](Z; (0)) + U7 )2 (t — ko))
Z Z 1,n
n>1 i, k=1n>1 1,

+Z ST N e o wd T n)(2; (- KS)).

k=11<n<n’ i,

The preceding computation can be iterated: for some time ¢, § < t and ¢ such that §/§ = K € N, and
any initial data Z 4 € Y.

(3.12) thz =3 Wl hl(Zs, +ZZZ¢>’“‘ (Zs, (t — ko))

n>1 i, k=1n>1 3,

+Z ST N0 0wl T2y, (t — ko).

k=11<n<n’ i,/

3.5. The decomposition of the covariance. The final ingredient is a second sampling on a longer
time scale 8 = 1/ log |loge| which control the growth of the number of collisions.

Definition 3.1.5 (Number of particles at time 7). Fiz ¢t and § such that t/6 = K € N*, parameters

({1}, w2, (Sk)k<n—m) and admissible initial data Z,, € %glt} war(sp)es FOTT = ké, the number of particles

at time 7, n(7), is defined as the size of the connected component of {1} in G[QT’t],
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We want that the number of particles (n(t — kf)) grows at most exponentially.
Fix 1 <ng <--- <ny. We denote n; := (n;);<;. For t € ((I —1)6,10]

1 ny—1 Lt/6]

(3.13) Upth] = 1) > T sehlzatt, - {1}, (s6)x) g0 1T tac—ioy=n.,

(sk)k<n;—1 k=1 OhGor 227
and for t € [(I —2)0, (I — 1)6)]

n;—1
1

(i — 1)! > I sehtaatt, - {13,w, (s)n) azt o H]ln(t i0)=n,-
l " ewcm] k=1 L2 it
(sk)k<n; -1

(3.14) U>tp) =

n;

We can iterate the preceding decomposition of ZLAZ/I h(z;)(t)):

(3.15) Y > WYNIR)(Z;, (t - 6))
n>1 i,
Z Z‘bgi' 0‘1’09 [h](Z;, Z Z@j,‘j 0\110‘9 [h](Z;,, (t — K0))

n'>n i, n'>n i,
722 (17177/) 411, qu)(lnn’ i (tio)
n'>n i, n'>n i,

+ Y Y B o UNIR)(Zs,, (8 — kS))

1<n<n’ i,/

The decomposition is performed until reaching the time 0: denoting K :=¢/0 € Nand K’ :=6/§ € N,
for almost any initial data Z_y (0) € 2,

N
(316)  Yohm)= > Y UM (z (t— ke))

(nj)i<k
0<n;—n;_1<2’

(3.17) + Y 3 DD IR 25 (Zn’(t—kﬂ))

1<E<K  (nj)j<k—1  ne>2F4ng,_q 2
0<n;j—m;_1 <27

(3.18) + > > > wr ) (2., 1)

0<k<K-1 (nj)j<k Ngp42>NE 412Nk Ly, ny
1<k: <K 0<n;—n,_ 1<27

POts—0 0,8 .
(3'19) + Z Z Z Z PR nk+177’74k+2 [h] (Zlnk+2 (ts))
0<k<K-1 (nj)j<k Ngy1>Ng 4
I<K' <K' 0<n —n;_y <27 Mh+22Nk+1

“ny

“Nk+42

where tg :=t — k0 — K'0.
Finally, the convariance is split into five parts
(3.20) E. [¢E(h)¢°(9)] = GE(1) + GE™(1) + GEP () + G (1) + GEo*(1)

e where the main part

. 1
(3.21) GTM(t) == e | —= vEh)(Zs, (0))(2Z:, (0))¢2(g)],
321 0= 3 E ﬁgu (2., ) (2., )

Ognjfnjfl SQJ

e the first error due to the symmetric conditioning and the suppression of the overlaps

clus t 1 t
sy CUO=E[COC@I] - Y B ST (2, 0) Qo |

(nj)i<x Ing
OSTL]' —Nj—1 S2]

e the part controlling the growth of the number of particle,

(3.23) GoP(t) = E. 4» . }c% L TE],
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e the part corresponding to non-local recollision,

i X ]
3.24 G=el(t) == E. |BI8) x —=2(9)1x. |,
(3.24) (1) _ 3.18 N (g)Ly |

e and the part corresponding to local recollision

] . ]
3.25 G2 (1) == B |(B19) x —=C2(g) 1. | .
(3.25) (t) _ ﬂc (9) Te |

The parts GS'US(¢) and GSP(t) are estimated by (5.1):

G2 (t) + G<(0)] < Clgllolibllo (7*(CH* + %7z ).
the part GE%1(t) is estimated by
|Gt ()] < [lgllollflos®/ 2K 25" (Cy2" +2446,
the part G“%(t) is bounded at (8.I)):
[Gree2()| < Clnllollglo K25 (C5)* et
and the convergence of G (¢) is given by :
G?Ww=AM@%w@M@M+O(@“+ﬁKﬁ( D) kgl )

where g, (¢, z) is the solution of the linearized Boltzmann equation (2.16]). Combining these four estima-
tions, we obtain the expected bound (2.15)

(3.26) EJ@@@MH=Ama%mAM@m+0(@%+wK%«%W“)Mmmm

Remark 3.1.4. In this section, we have defined three different pseudotrajectories :

e in Definition[3.0.3 we have defined the general definition of pseudotrajectory, which is used in the
estimation of pathological recollision GT°2(t),

e the pseudotrajectories of Definition have mo recollision and are used to treat GT*"(t),
Gelst(t) and GE™(t),

e Definition [3.1.3 describes pseudotrajectories with nonpathological recollision. There are used to
bound Gree2(t).

4. QUASI-ORTHOGONALITY ESTIMATES

The different error terms obtained in the previous section are of the form

Z‘I’ t))¢2 (9) Ly

where the ®@,, : L>®(D) — L*°(D™) are continuous functionals. In order to bound the errors, we need an
L?(P.) bound of

A 1

@, = ,uin Z q)n[h](zi") - E[®,].

The following section is dedicated to the derivation of such estim, using detailed estimations on the
functionals ®,[h]. We will use, in particular, that we can bound the ®,[h](Z,) by looking only at the
relative positions of particles inside Z,,.

Definition 4.0.1. We denote for y € T the translation operator
D — D"

(4.1) try :
(Xnavn) — (1‘1 +Y, ,$n+y7Vn)
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Fiz n,m two integers, g, : D — R, hy, : D™ — R two functions and | € [0, min(n, m)]. We define the
multiplication on | variable ®; as

(42) Gn ®y hm(Znerfl)

1
= (n+m—l)'n'm' Z gn(ZO'U’([l,n]))hm(ZUU”([n+1—l,n+m—l]))'
T ses([ntm—1))
o’'e&([1,n])
o' €& ([n—1l,n+m—l1])

where &(w) is the set of permutation of w.

Theorem 7. Fiz m < n two positive integers, and g, : D — R, h,,D™ — R two functions such that

there exists a finite sequence (co,Ch,C1," ,Cn) € Riﬁ bounding gn, hm, in the following way:
o= Hn(Zn)
(43) / Sul]:r) |gn(try Zn) | W dX2 n dV < Co,
e1=0 ye ™
o= Hom (Zm) /
(4.4) / sugr) }hm(try Zm)| (271')L§d dXo m dVi, < ¢
x1=0 ye
and for all 1 € [1,m)]
e~ Zntm—1(Znym—1) Ml_l
(45) / Slél']l? |gn ® hm(try Zn+mfl)| (2 )(n+m—l)d dXZ,nerfl an+mfl S ch
Y T 2

CD1:0
There exists a constant C' > 0 depending only on the dimension such that
(46) |Es [gn” < C"c, |Es [hm” < CWLCE)
and

(47) { ] i( )( ) ’ ——Ee[9n &1 m]+o(cn+mcocg§),

=1

In particular

(4.8)

~ 7 e
E. [ugnhm]‘ < ontm <1r<nla%}§n c + Coclo D) .

Proof of Theorem[7
e We begin by the proof of (4.6).
Using invariance under permutation

. 4z,
Z / Z gn(Zn)e %(Z”)W

Egn:

f&f” p>n (i1,70n)

Vk,ip<p

p! dz

7 7<%(Zp)7p
Qp Z p, n—p) /gn( n)e (27T)dp/2
1 —Vtp(Xn, X ®n
§Z / XX Mo 47, dX,.
p>0

We recall the notation

x=o 3 or(22)

1<i<j<n
and we denote in the following  := {X,,,2,--- ,z,} and for X, Y € Q,

49)  plz,z;) = exp (—o/f/ (“:EIJ» —1, p(Xy,z,) = exp <—a§;7/ (‘””fﬂ)) —1

Defining d((z1,--- ,Zn), (Y1, , Ym)) as the minimum of the |x; — y;|, we can bound ¢ by
—lgx,yy<e < 0(X,Y) <0.
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We decompose exp (*7/11+p(Xn+1,Xp))

e et d) — o) T (L4 (X, Y)) =G 3 [ w(X,Y)

(X,Y)eq? GED(Q) (X,Y)EE(G)
XAY

where ¢4(Q) is the set of non oriented graphs on Q and E(G) the set of edges of G. Denoting by € (w)
the set of connected graphs on w,

exp (—Ytp(Xn, X))

-y (evfn(xn) 3 I exy) > 1T sD(X,Y)>
]

wC[L,p Ge?(wU{X,}) (X,Y)EE(Q) Ge¥Y(we) (X,Y)EE(G)
(4.10)
=) 3 e MK Y I[I «xY
wC|[1,p] Get(wU{Xn}) (X,Y)EE(G)

=e ) N e e ey (X, X))

wC|[1,p]

Thus, using exchangeability, E.[g,] is equal to

LZ Z w_pt (Z)" (X, X )e—sz(K;Q)ide dx  dx’

z p>0 p1+p2=p Pt pulps! A (2m) = I
1 Hp/ V(X)) / e Hn(Zn)

411 — | =S A [ X)) gx n (X, X dZ, dX,,

(4.11) Z o X, I;J In(Zn ) (X, X)) ———— e

o= (Zn)
/gn n) Xn,X )ﬁ dz, dX

p>0 2m) 2

We recall Penrose’s tree inequality (see [Pen63, BGSRS22c, [Jan]), for function ¢ define in (4.9),

(4.12) > I ecxvi< > I  lex,v)

CEF(Q) (X,Y)EE(C) TET(Q) (X,Y)eE(T)
Z H Tax,v)<e

TeT(Q) (X, Y)EE(T)
with 7 (1) the set of trees (minimally connected graphs) on Q. Fix tr_,, X, (the relative position
between particles 1,--- ,n). Integrating a constraint ¢(x;, ;) provides a factor cae?, (X, z;) a factor

ncqae? (where ¢4 is the Volume of a sphere of diameter 1). As there are (see for example the Section 2 of
IBGSRS22¢| or [Janl)

(p— 1)
trees with specified vertex degrees dy, - - - ,dp associated to vertices X,,, z1,- -, z, , we get
(p—1)! . .
wn<XnX ) n O(Cd€ )p
/ p P dl,'§p>l (dO _1)'(d1 — 1)|(dp_1)|
dot-+++dy=2p
(4.13) .
n 1 ,
<ot | 3 0 ) (2t )| 2
iz (do =Dt = (da = 1)! =, (dp = 1)

<(p—1Dlne" (ecdsd)p.

We can integrate on the rest of parameters using (4.3)). Hence

p—1)! o= Hon(Zn)
R S 8 [ A Dic Lo

750 p! (2m) 5 70

The series converge for ¢ small enough as ? > €. This concludes the proof of (4.6).
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o We treat now (4.7)). Recall first that

E. {Mgnilm} = = 1 Zgn ‘,L) Z hm(Zim) — HEc [gn] Ee [him] -

Let us count the number of ways such that i, and J,, can intersect on a set of length [. We have to
choose two sets A C [n] and A" C [m] of length I, and a bijection o : A — A’ such that for all indices
k€ A, ir = jor and that i 4. does not interesect l(Ac)/' Thus, using the symmetry,

E. [u gni}m} - i: (7) (T) ululJEg (gn ®1 ]

+p | Ee n+m Z 9n(Z L, hm —n+1,n+m) — Ec [9,] Ec [g]

Lptm

To estimate the error term in (4.7)), we need to compute

l n+m Z g" 171 m n+1,n+m)‘|

Lptm

/gn n )eXp (*/Vn—}-m—}-p(XnaX;n,Xp)) M®n dZnM®m dZ;n dlp

p>0

We denote in the following  := {X,,, X}, 2, ,z,}, and we decompose

€xXp (_A//n-i-m-i-p(Xn) Xéqup)) = e_”i/n(Xn)e_“VM(X;n) H (1 + 90(X7 Y))

(X,Y)en?
XAY

= ¢ X Tm(X0) 37 I exyv)

Ge¥ () (X,Y)EE(G)

where

, n m .Ti—x/-
(X, X)) :=exp —O[ZZ’V< - J)

i=1 j=1

We make a partition depending on the connected components of X,, and X,, in G,

exp (_%l+m+p(Xn7 X;R,Xp) + A//n(Xn) Z d)’n ,m X X/ ) _ﬂyl\wc\(zw(:)
wC|[1,p]
D U (X X U0 (X, X, e Tl Enen),
w1 ,w1C[1,p]
W1ﬁUJ2=‘Z)

where the first line corresponds to X,, and X/ in the same connected components, the second correspond
to X,, and X/ in disjoint connected components. In the preceding equation, we denote

Y (X, X X)) = > [T exy)
Ge€(wU (X,Y)EE(G)
{Xn, X0, 1)
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Permutating the indices and using (4.11), we obtain the following equality

1 e n m — (w1 Uwg)e e
?Z o 9 Z) b (Z1) Z Voo | (X Xy W10, (X Xy JeT T 010e) & (wy Uwg)e)
p>0 w1,w1C[1,p]
w1 Nwa=0 efii”n(zn) efjf (z,)

(2m) (2m) "2
= %Z Z ipil/gn(zn)hnf(Z Ny (X, X, )wpg(xn+1,X'2)

| 196 1pa!
p>0p1+p2+p3=p P p1p2°ps:

Frl = 47, dX,
2 2

(g 400 ) (i 120 87 ) () 0 )

27r) nd Ay W) 7réd

= Ec[gn]Be[hn],

and in the same way

p>o (L.p] e~ (Zn) =200 (21,) ,
v dZ, dz! dXx
(2w)% '

=Z7> > o /gn(zn)hm(zgl)wlw’l (X, X1, X, Yo 72 50)

1 pylpo!
>0 p1tpa=p b p1:p2:

= Hon(Zn) = Hon (Z},)

X = G dz, dz;, dX,, dX;,Q
» o= Hon(Z) = Hon(ZLy)
Z M /gn n )1!}‘ | (X X’:nﬂ&pl) (2 )(n+m)d dZ" dZ;n d&pl dz;m
p1> >0 ™ 2

Using again Penrose tree inequality,

(4.14) M;'m X0, X!,

Z H lp(X,Y)| < Z H LTacx,vy<e

Tey(ﬂ) (X,Y)EE(T) TeT(Q) (X,Y)EE(T)

First, we fix tr_,, X,, and tr_,, X}, Integratmg a constraint ¢(z;, ;) provides a factor c4e?, (Xn, z;)

a factor ncqe?, (X, z;) a factor mege® and (X, X},) a factor nmege?. Denoting do, dfy, dy - -, d,,
the degrees of X,,, X, 2;,---, z,,, and &1 := 21 — 27,

’ / U (X, Xy, X, X, di

p! do,d dy+1
< n®m (cqe®)
(4.15) p dOZd o, (g —1)(do = 1)l (d, — 1)!
0° 5 yAp =
do+do+---+dp=2p

+1
<p! (cdad)p nm e TP,

We can integrate on the rest of parameters using (4.3)) and (4.4)), and finally

1
p| Ee Lt Z gn(Zin)hm(Zin“J#m) - E. [gn] E. [g]

p
+1
< cochit Z 'u—'p! (cded)p nm e TmP

p>0
< us nm cde coco Z ecds
p>0
< (g/o)CmtmHl Z(ecda/b)p

p2>0

which converges for € small enough.
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e To prove (4.8), we apply the estimation (4.6) to (4.7):
m
. s n\ (m\ U p'~tC ntm, o €
o] ;(JQ)M17LC+C 03

= Z ( ) (n —l Clcl +C" M eoch
=1

(14+C)™ max ¢+ C" ™¢yc).
1<I<m

IN

IN

Note also the following bound in L? norms of the fluctuation field.

Theorem 8. For any p € [2,00), there exists a constant Cp, > 0 such that

(4.16) (E< [2(0)"]) """ < ColgllLoaroyas)-

The proof can be found in Appendix A of [BGSRS21].
From these estimations, one can deduce the following corollary:

Corollary 4.1. Let h,, be a test function satisfying the conditions of Theorem [} Then there exists a
constant C' > 0 such that

E. \}ﬁ;hn(zin(ts»c?(g)hg]
1/2
< " [((g)2] (cO+ (s a) )

1<i<n

(4.17)

Proof.

Ly

E. Uﬁ;hmzin(ts»c?(g)n ]—m 'E. [ﬂz "D (21, (1)) () ]
_ /f”(Es [u%h (Zy(t ))gg(g)hs} + E. [hn] E. [NQCS(Q)ITED
- ﬂnl(EE [H%a(zﬂ(ts))cg(g)]ln} + E [hn] Ee [CS(g)u% (1—Tre) D :

By E.[¢?(g)] = 0 and using Cauchy-Schwarz inequality, we find

7 Zzh g )ha]

wﬂ@#ﬁﬂﬁwu]%[}WUﬁmmW>

We apply now Theorem |7} The bound on P. [Y¢] given in Section and the bound on the LP norm
of ¢%(g) (@.16)) lead to the stated corollary. O

5. CLUSTERING ESTIMATIONS WITHOUT RECOLLISION

The objective of this section is to bound G<'"*(¢) and GP(t), defined by

G =B [0 - P R | ST (2, 0) 0t |

(nj)i<k oy
OSTL]‘ —nj_1§2j

Z Z 1 Z
Gexp 1<k<K (ny) >0k B ﬁ \1/%59[]1] (ZZ" (t—k‘@)) CE( )]lTE
Nnj)j<k—1 V’I’Lki +ng—1
0<n;—n; -1 <2’
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Proposition 5.1. For e > 0 small enough,

(5.1) GEP(t) + Ge(0)] < Clalollbllo (4(Ct)*”" + 162)

To obtain the stated result, we need first the following bounds on the pseudotrajectory developments
without recollisions of type Wi [h]:

Proposition 5.2. Firk € N, n:= (ny,--- ,ng) € NF with ny <ng < --- < ny, and define
Then fixing 1 =0
— Iy, (Zny,) A
€ k k 0 Nk ANk — Nk — ng_1—1
5.2 /sup\I/W try Zn, ) |————a— AV, dXop, < e CTEQMET M ()1 L
( ) yGT} . ]( y k)| (27T) gd k 2,ng (ub)”k‘l ( )

and, for m € [1,ny],

e~ ony—m(Zan, —m)
(2ng—m)d d‘/QnK—m dXZ,QnK—m
2

/ sup [ WO [B] @y WOH ] (b1, Zar )|
y€eT (2m)

™t ko ’
< Cnk gnk*nk—l(kg)nk—ﬂrnk*l'
=T Gy

Using Corollary [£.1] and the previous estimations,

E. [M—l S v (2, (- 16) <£<g>h5]

L

(5.3)

< llglollloC™ ((§) == (4=

—
ISIES
N
3
Ead
3
Ead
-
—
‘A“
R
3
kol
T
3
[N
-
-
N———

I
< llgllolialloC™ ()

and in the same way,
pE YN (2, (0) Clg) e
Lnge

Summing on all possible (ny,--- ,ng), we obtain

K —
G (1) sz 3 ST lglolinlloc™ (0/0)~

Ini<-<ng—1nEp>2F+n,_1
n;—nj_ 1<29

= 0 (<HllglollhlloC™* (t/2)™ )

= (t/o)™

Nk~ Mg—1

Sy Y Y (em)

k=1n1<-<ng—1np>2F4ng_y
TLj*TL]‘_1S2‘7

K k—1
2 2 2 2
< Cllglolirllo > 2 (%) < Cliglollllo %
k=1

as the series converges for # small enough. In the same way
|Gt (1) | <Po(TE)TEL[CO(9) "3 B[ (h)?]2
c n n 1
+ Y P gllollhlloC™ ™ + (lgllolibllo(S2)m < (£)?

m<-<ng
nj—nj,1§23

<Cllgllolihflos¥ 2" (C1)*"
This concludes the proof of (5.1]).
Proof of (5.2). We recall that for t = kf and that

1 ’I’Lkl —

0,k0 ,_
\I/ﬂk [h] = m Z H Slh Zl , 7{1} (Sl j()t H 10)—nnk i

{a}, (s
(81)i<ny,—1 1=1
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This gives directly the following bound on \Tlgkt [h]

_ h 0
(5.4) 0] < (n|,l_|1>| 2. 2 Lay . b@-mer
(s1)1<ny, -1 (81)1<ny -1

As the left-hand-side of is invariant under translations, it is sufficient to fix 1 = 0 and integrate
with respect to (Xa.p,, Vo, ).

We define the clustering tree T~ as the sequence (¢i, Gi)1<i<nz—1 where the i-th collision involves
between particles ¢; and ¢; (and ¢; < §;).

Since in the present Section, pseudotrajectories have no recollision, the clustering tree is just the

collision graph where we forget the collisions times (but not their order). It can be used to parametrize
a partition of %gl}t} (s

Let us fix a clustering tree. We perform the following change of variables
X27nk — (.’13'1, R 712’»,%,1), Vi € [1,nk — 1]7 i’l =g, — Tg;
Fix then 7;41 the time of the (i + 1)-th collision, as well as the relative positions &1,--- ,&;—1. We
denote T; = 0 if i < np —ny_1, t else (at least ny — ng_1 clustering collisions happen before time #). The
i-th collision set is defined by

BT>,1’ = {Li'z

Because particles x,, (7) and xg, (7) are independent until their first meeting, we can perform the change
of variable &; — (7;,7;) where 7; is the first meeting time and

0 = XQi(Ti) _qu'(Ti) )
|X¢Zi (Tl) —Xg (TZ)|
It sends the Lebesgue measure d#; to the measure e4=*((vy, (1;) — vg, (1:)) - mi)+ dn; dri and

Ti/\Ti+1
/ Ip,. , A < CetL v (ms) — vg, () /O drs.

We want sum now on every possible edge (g;, g;), hence, we need to control

37 € (0,13 ATiv1), [Xq:(T) = xg,(7)| < 5}~

1/2
D Ve (i) = va, (7)] < 20k Y vi(7i)] < 2mi <nk > |Vk(Tz‘)|2> < g (nk + [V, (7))
(94,35 ) k &
Lemma 5.3. Consider a time T € [0,t], collision parameters (w1,ws, (;):) and an initial position Z,, €
D™. Then

%|V(Ta Ly Wi, Wa, (Si)i)|2 < %L(Zn)

as there is no overlap between particles.
Proof.

Definition 5.3.1. Consider two times 0 < 7, < 7, < t. We denote & the collision graph of the
pseudotragectory Zy, (-, (w, (8:)i), Zn,) on the time interval [14, ] and G a graph with edges

{(@a) el 37 € lrn). (@01 €9}

We take only into account the collisions with interaction. We define k := (K1, -+ , k)the clusters on the
segment |71, T2] the connected components of G.

Note that if 7, lies between the beginning of the collision implying s; and the beginning of the collision
implying sjy1, then k only depends on the (5i>i§j-

We distinguished the cases 7 > § and 7 < 4.
o First, if 7 < §. We consider (k1,- - , ki) the cluster on the segment [0,]. The pseudotrajectory

is the Hamiltonian trajectory associated with the energy

=S (2 2 3(22)

i=1 q,4ER;
q7#q

Hence

3V (T, Zn,wi,wa, (s:)0) P < AO5((1) < H(Zn) < H(Zy).
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o If 7 > ¢, consider k and &’ the clusters on [0, 7] and on [0,4]. After time § the particles outside
wy stop interacting, and before time & the couple of particles in wo cannot overlap. Hence, k' is
a finer partition of [n] than k and J, < . Thus

1
(5.5) Vo () < Hu(Zni (7)) = H(Z3,,(9)) < Ao (20, (9)) = Hir (20, 0)) < H5(Zn).
O
Hence, using the Boltzmann-Grad scaling pe? 10 = 1,
Z / dj:l]]'BT>,1 / dink—l]]-BT>’nk,1]]-n(G):nk,leijfnk(an)
(9:+Gi)i
C ng—1 B Tnk—l Ty N\T2
< ﬂ (nk_‘_%k(znk))nk le— nk(an)/ dTnk—l"'/ dTl
Mo 0 0
nE—1 Np_1— N —Nk_
< (C’nk) * nzk_lefifnk(zznk) t"k 1 Orr T NE—1
no (ng—1 — 1! (ngp — ng—1)!
~ nkfl v 2
< C nnk—le—‘ "’fl tnk—l—lgnk—"k—l
I F ’
We used these to classical inequalities
(a+b)** _ p(a+D) a+b
ar = =)
A+x At B A B A
VA,B >0, ,x € RT, (A—&-x)Be_% =BFB ( 5 6_23) et < (%) et
Finally, we sum on V,,,, on the 2"*~! possible (s;); and on the ¢ € [1,n], and we divide by the
remaining (ng!). This gives the expected estimation. a

Proof of (5.3)). We begin as in the previous paragraph

(5:6) | O9L1A] © U W) Zany )|

R|I2 (ng —m)!?m!
< t .
~ ()2 (2ng —m)! Z Z Z lg?q} (s (Zo)Ln@)=ni—s(Z)

wlw'=[2ng—m] 9€ (s1)i<n, -1
|w]= |W/| =Nk g€’ (Sl)l<nk 1

X 1 0.t Zor).
‘%(qt’},(s;n( o)
where n(f) is the number of particles at time 6 in the pseudotrajectory Z(t,-, {1}, (s;);). The right hand-
side is invariant under translation. Hence, without loss of generality we can suppose that 1 ¢ w’ and fix

T = 0.

We have to consider two pseudotrajectories

Z(1) :=2(7, Zy,q, (s1)1) and Z' (1) := Z(1, Zo, ¢, (8))1)-
We want to estimates
]].'@O t (Zw/)67%‘%"k*m(zznk*m) dZw'\w'
{a’}. (s

Fix Z, and denote T, the clustering tree of the pseudotrajectory Z(t), constructed as in the proof of
. Next, we construct the clustering tree associated to the second pseudotrajectory: let (qz,ql)lq
be the edges of the collision graph of Z/(7), taking temporal order. Set T, = (). Suppose that T} is
constructed. Then T;, 1 := T; U {(g;,G)} if the graph T, UT; U {(g:, @)} has no cycle. Else T, := T;.
At the ¢-step we have construct an ordered graph T} := T, with n, — m edges.

The T;, define a partition of {Z,n,, € D"~ Z,, € %’?qt} 9, }.

The rest of the proof is almost identical to the proof of . Fix the clustering tree T, = (q;,
di)1<i<ng—m, and perform the following change of variables

Xw’\w — (.’)3'1, s ,i’gnk,mfl), Vi € [1,2nk —m — 1}, ZT; = Tq, — g

Fix 7;41, the time of the (i + 1)-th collision and relative positions &1,--- ,&;—1. We define the i-th
collision set as

BT>,i = {i‘l

37 € (0T Amivn), X, (1) = X, ()] < 2}

qi —
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where T; = 6 for the (ng — ni_1) first collisions, ¢ else.
As in the preceding lemma, we can perform the change of variable Z; — (7;,7;) where 7; is the first
meeting time and

X/qi (TZ) - qui (Tl)

n; = - if the collision is in Z'().
We have
Ti+1
S [ dnsot S v [
(g4,d:) (qi,3i) Ew’? 0

Using the same method than in the proof of (5.5)), we have

>

(qi,Gs )EW'?

V:h (Ti) - V</7i (Tl)

< g+ VL () < 2y + 2560, (Zor)

<20y, + 29650, —m(Zon),—m)-

By the same computation than above,

_1
/]l%w (Zw,)e 3 an, —m dZw’\w
{a’}.(s)

Aoy —m T V12
< Z/e*f IT 1s,., d&i e 5 dV
T, i=1
C NnE—m
<C <> T (20 — m)"E T
no

We can estimate

—1,
‘/]].%.r{);;},(sm (Zw)e 372ny, de\{l} de

as in the proof of (5.2). We get the expected result by summing on all the possible parameters (s;);,
(8)is ¢, ¢/, wand W' O
6. TREATMENT OF THE MAIN PART

The aim of this section the proof of
Gren(t) = [ heea(t. )Mz +0 (O + K2 () il )
where g, (t, z) is the solution of the Linearized Boltzmann equation (2.16)).

6.1. Duality formula. We recall that

. 1 t
Gxgnaln(t) — Z E. ﬁ Z \IJ%K [h] (Zin,K (0)) g(g)

('ﬂj)ng . zn}(
Ognj—nj,1§23

<o, A
= > R [ byt )]
n1<--<nk
NG —Nj—1 §2j
where \I'g; [h] is the development of h(z;(t)) along pseudotrajectories with nj remaining particles at time
t — k6 and no recollision, overlap nor multiple interaction.
We denote

n T (Zn)—Fonsp(Zn,Z )
1 ‘up e +p Zp
9n(Zn) = 9zr) | = ) / - dz

p=>0

(S ol
R (;g( k)> pzzo p! /w” (Ko, Lp) A X,

where the ¢ are defined in (4.10)).

(6.1)
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Then using the equality (4.7) and L' estimations on \I!%It( [h] of Section |5, we have for h and g in L™

aringy = 3 IR, [\Ilg;o[h] ®1 g} +0 (f—: Z(CJ)”’“WHOHQ”O)

ni<-<ng n

njfnj,1<2j
g0t | £ e i) dZ,,,. K2 Cty25K+!

> Vi ) () 0 ) i +0 (= (K2 () 1nllollgll ) ) -

T) 2

We want to compute the asymptotics of each term in the sum. As we suppose there is no overlap

e~ Zng) 427,
/ PRG0N () (Zae) 0 (Zo) = Un

(2m) "%
nK 1
o anl'Z

n;—1 K
(sk)k m (Sk)k i=1

H Sk / ZTLK7 {1}7 (sk)k))gfLK (ZHK) H ]ln(t—w):niM@nK dZﬂK

where %{1} (5% is the set of initial parameters such that the pseudo trajectory has no recollision and

n(7) is the number of remaining particles at time 7 (see definition m We had an exponent € on z§ to
mark the e-dependence of the pseudotrajectory.

We want to construct the limiting process of the pseudotrajectory Z (7).

We denote T the clustering tree as the sequence (g;, Gi, 5;)i<nx—1 Such that the i-th collision happens
between particles ¢; and g; (with ¢; < ;) and §; is equal to 1 (respectively —1) if the particles interact
(respectively do not interact). Fixing the initial velocities V,,,, we perform the change of variable

xS, (1:) — X, (1)

Xy — (@1, (Viy Ti)i<nge—1), with v; =

€
Its Jacobian is
’nk*l
Ar (Vi oy Vi —
AXpe = [ & (5 (r) = Ve, (7)) - wi) , dvi dry = T((ug)nk[’; ) AV, —1) ATy _1) das,
i=1
Ving—1] = (Vla e aynk—l)a Ting—1] = (Tla e 7Tnk—1)-

The kernel A(Vj,,V},,—1)) only depends on the successive velocities (v§, (7;),vg,(7;)) which can be
deduced from the collision graph, forgetting the exact values of the dry,, _q) (since we have forbid the
pathological pseudotrajectories).

We defined the signature of the collision tree o(7T') := 5152 - + - 85, the set of collision times

T, = {(T)icng—1, i <Tig1, Ve < K, j € [ng —ng_p,nKg —ng_p-1], k0 <75 < (k+1)0}
and for a given family 7, 1), we define &% (7, 1)) the set of coordinates (21, (Vi)i<ny—1,Vny) such

that the pseudotrajectory has no recollision and for all j, ( (7)) — v, (Tl)) - v; is positive. The map

|| {583 % | 23 (o), N {no overlap} 0 (1) {n(j6) = nx—;} | = | {T} x Tu, x &%

(sk)k J<K-1 T
(X Vo) = (@1, (W4, Ti)i<ng—15 Vi)

is a diffeomosphism and

©2) [t n <an>gzK<ZnK>®"K AZ

—ng+1

- Z /T o hzi(t,T)gr, (27, (0,T))

’IZK — 1 ' N
X M®nKAT(VnK,Z/[nk,1]) dV[nk,—l] dT[anl] dzy dVy,, .

Definition 6.0.1 (Pseudotrajectories for punctual particles). Fiz a collision tree T := (q;, G;, 5;) and col-
lision parameters (Vi , Tin, —1]> V[n,—1])- We now define the pseudotrajectories for punctual particles. The
velocities VO, _(1,T) follow a jump process: at time 0, Vo (7 =0,T) = V,,,.. At time 7;, if 5, = 1 the veloc-
ities of particles g, G; jump to vg,(1;"), vg, (") given by (04: (1;"), 0q: (177), 74) = Ea(vg, (777),0g,(777), 1)
(€o the scattering map defined in )
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We defined &, the set of the (1, (V;)i<ng—1, Vag ) such that for all j, (v9 () — V0. (7)) -vi is positive.
Note that &5, C 5.

Finally, we define the formal limit of the g,

gnK nK . Zg Zz

We have formally the convergence

/ RGO (B (Z, ) gzK<ZnK>M®"KdZnK

—ng+1

Z /T o0 Wz (t,T)gny (Z0,.(0,T))

X AT(VnK; V[nkfl]) du[nk,l] dT[anl] dl‘1M®nK anK

E—)O K—l'

In order to have explicit rates of convergence, we decompose the error into three parts:

(03) [ ur w7, MO A2

—nK+1
=~ 0+ @D+ oy Do) [ AT (2, 0.7)

X AT(VnK; V[nk—l]) du[nk,_l] dT[nK—l] da MO"K AV,

where we define
aan+1
64 = o A e (P25 (1. T g (26, (0.7)) = (1, T)gn e (25, (0,T)) )

XAT( nKs [mc 1]) dl/[nk 1] dTnK 1] d1‘1M®nK anK,
a—"K+1 ¢
. = T T T)) (1 — 1gse
63) =g gy e >/®OT Bz (6 T) g (25, (0,7)) (1 — L)
X AT(VnK;V[nk—l]) d’/[nk—l] dT[nK—l] da MO"K AV,
—ng+1
66) =0 ErEPIL L M T) (07, (22 (0.7) — 90 (25, 0,7))

X AT(VnK, V[nk—l]) du[nk_l] dT[nK—l] d:ClM@nK anK

The error parts are estimated using the following standard results:

Lemma 6.1. Fizx 7 := (ny,--- ,nx) and denote for p € [1,2]
neg—1
Ag‘(vnfm Ving— 1] H |V - V’ Ti_>|p

For any € > 0 sufficiently small, we have
D*TLKJFI

671 )

O’(T)/ AP (Vi (dvi)i) ATp e -1 dey M®"< AV, .
T e X B9
< CnKtnK—lflgnK*nK—li

Proof. Fix first the collision tree T := (g;, i, 8;);- We sum on each v; in the decreasing order:
— _ 2P P
08 Y [ M) Bl dn 20 Y alm) vl < O F V()
(4i,3i,5:) (Gi»54)
2-% 5
< COnje ? [Vog|

using the conservation of energy.
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Hence,
Z/A’%(Vnw”[nk—u) AWy MO AV, < CMn / Vil 5 ME™< v,

SCfKnﬁyK/ Vil av,,, < oprnlee.

Integrating the collision times

@k —Mk+1 K —1)9)*xk-1—1  gnr—nK+1
[ =TI _ (K= 1)
T

g k=0 ’I’L}C — nk+1 ' - (nK_l — 1)! (nK — ’I’LK_H)!
2nK—1tnK,1—1enK—nK+1
<
- (nK - 1)'
Finally, we multiply the two previous inequalities and ———. Using the Stirling formula, we obtain
the expected estimation. O

Now we can bound . We recall that

(Zg zk> Z /z/;" X, X,)

p>0

where the ¢ are defined in (4.10)). Using the estimation (4.13),
Z re /w”K i X)) dX, < Z ME —1)! (C’ee ) nge"s < Z (C’e) P e < 2enpee™s
p

p>1 p>1 p>1

for & small enough. Hence, |¢5(Z,) — gn(Zy,)| is smaller than | g||oC™*e and

(GBI < Tt gllollAlloe.

Lemma 6.2. Fiz 7i := (n1,--- ,ng). For any € > 0 sufficiently small, we have

- 1— 1o
(6.9) (ngx —1)! X6,

AT(VnKaV[nK 1]) ank 1] dT[nK 1] dx1M® K dV
< C7LKtnK+1OEa.

This is an estimation of the set of parameters leading to a pathology (a recollision, a triple interaction,
or an overlap). It is proven in the Annex From Lemma we deduce

1(6.5) < c(Ct)* &gl [|n]].
i), T, e >0 and (a1, (T, V)i, Vag ) € 5. We have

'ILK—l

2ng Ve
X< -xY < = i
«(7) K(T)‘ 1:21 ‘ti(Ti ) = va,(T; )|

Lemma 6.3. Fizn:= (nq,---

(6.10) vr e 0,14,

Proof. Thanks to the estimation of the interaction time (B.1|), the i-th collision lasts at most a time

W—(f)‘. Hence, the two trajectories X5, (7) and X, (7) have coincident velocities for 7 outside
a;\Ti )7 Va;\Ty
the union of the interval

nkfl

.. e
U |:sz T + |ti (Tii)_ti (7_1)|:| .
i=1

During a collision a particle can cross a distance smaller than =V | which bound the error

|ti (17 )=vaq;(7;)
that a collision creates. Hence, after ng collisions, summing on all the possible particles we obtain the
expected bound.

O

Lemma 6.4. Fizn:= (ny, -+ ,ng). For any € > 0 sufficiently small , we have

(6.11) @4 < c(Cty=~"Vellg|l1[[]]:-



34 LONG TIME VALIDITY OF THE LINEARIZED LANDAU AND UNCUT-OFF BOLTZMANN EQUATIONS
Proof. We have forbid any recollision, multiple interaction, and overlap. Hence, the velocities of pseudo-
trajectories of particles of sizes € and 0 coincide and

T’L}(—l

2n Ve k|1 llglls

63 < / Y I
'Z Tpy XO5 i 1 |Vq1 ) = Vg, (7; )}

X A( nK> [nk—l]) dy[nk—l] dT[nK—l] d$1M®nK an

+1 n n
(Ct) nK K—1 AT s Vi — 1]) dV[nk 1]M® KanK

< ||h|| lgllx Z Z/ Ve, (77) = vg, (7))

We need to bound

Z/ AT nxs V[ng— 1]) dy[n;C 1}M®”K dV

(6.12) |V (r;7)—v .(Tf)’

Note that VS(T;_) does not depend on the 7, _1}, but only on the order of the collisions.
Fix a collision tree T = (g¢i, ¢, si);- We define for i € [1,nx — 1] the applications (E?T)lgignx as
25 =idifi =1, and
qi—1 qz 1 i—1
_ <v1,~~ U Ul e Vg Ve Vg ’,,nK_l) if s =1
(6.13) .:& : (VnK7V[nk_1]) — -1’

i—1
(Vnk,Vl,"' y TVi—1, 71/an1> lf §; = 1

with the new velocities given by the scattering (v;ifl,v;( Vi) = E&allvg, ., ;‘ Vie !_1)). We have that

(VTLK (T;)ﬂ V[ianl]) = :%:lT T ‘—‘%“(ana V[nK—l])‘

Using that the Jacobian of the scattering &, is 1 and the conservation by the scattering of the energy
and angular momentum, the Jacobian of the transformation =524t - - Z is

A2 (Ve s Ving —11) Wiy —1) Azt MO AV, = A (Vi v —11) o, 1y day MO AV,

where we start now the velocity process at time 7, with V. (7;7) :=V,, and

i—1 ne—1

Aglf)(vnxry[nk—l]) = H ((qu (T;_) — Vg (7’;'_)) : Vj)+ H ((VQj (Tj_) — Vg (Tj_)) 'Vj)_ :

j=1 j=i
Hence,
(Vak s Ving—11) dVjn, - 1]M®nK AV,

- Z / |qu Vg, |

Using the usual bound on », A(V,,,, dvp,, —1]) that can be adapted to A;,

Vi g 12
2 nK \[ONnK K
g < 3 [l HURAE Vo o ey [T < (o
— vy v1 — vg
(¢:9")
as m is an integrable singularity. This conclude the proof. |

Finally we get for h and g Lipschitz

—ng+1
[ ) g7 M 42, = o) [ D) (22, (0.7))
T XBO

B — 1)
(TLK 1). T ng

X AT(VnKaV[nkfl]) dV[nk—l] dT[anl] d$1M®nK anK

+o(e°<?>"Knhn1ng|1).
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and therefore

D—TLK-‘,-I

(6.14) G = Y Y o(T) /: " W23 (t, T)gn (25,0, T))

(anl) T

X AT(anvy[nkfl]) dV[nk—l] dT[anl] dl‘1M®nK anK

a 2 K+1
+ 0 (K2R (L il gl ) -

6.2. Linearized Boltzmann equation. We now identify the main part of (6.14)).
Let g, be the solution of the Linearized Boltzmann equation

1
atga(t) +v- vmga(t) = sos/ﬂaga(t)a
ga(t=0)=g

where %, is the linearized Boltzmann operator associated to the potential a¥(-)

Lglv) = / o (0 4 9) = 9(0) — g M) (0 =) ), A

This equation can be rewritten in the Duhamel form:

Balt) = S(0g+3 [ St =) Zogalr) dm

where S(7) is the free transport
S(1)g(w,v) = g(z — tv,v).

We iterate this formula, but we still want to cut the cases with too many collisions in a short time
interval (as for the particle system). Let define

1 T Tn tmy2
Qm,n(T)[g] = om—n / dr, / ce / dTm+1S(t - Tn)gaS(Tn - Tn—l) ce faS(Tm+1)g;
0 0 0
and for ny := (ny, -+ ,ng) with 1 <ny <--- < ng,
Qﬂk (T)g = QL”I(%)QWI;WZ(%) T anfl,nk(i)[g]'
We have

(6.15) gt)= > QuOll+>. Y ST Qu, (K0)[galt — k0))

n1<-<ng k=1n1<--<ngp_1ngp>+ng_142F
'Ilj—nj_lSQ‘J njfnj,1§2]

In a first time we bound the term of the sum: we have the classical estimates

Proposition 6.5. There exists a constant C' such that for any g € L?>(M(v)dz), and n:= (n1,- -+ ,ng),

M1 np—npg_1

(6.16) 1Qu(k0)g ]l 12 a2 oyaey < (5277 (S = lgllzuoyas)-

The proof is the same than the one of Proposition 7.5 of [LB22].
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Because gqo(t) is bounded in L L*(M (v)dz) by [|gllr2(m(v)az) < Cllgllo, we can bound the rest term

ofby
K
XYY [ heQu ket M) iz

k=1ni1<-<ng—1 np>+ng_1+2%
nj—nj_1§23

K
C(k—1)0 5 Sk kol
<>, X > ()T T lalolinlly
k=1ni1<--<ng—1ng>+ng_1+2F
(617) nj—nj_1§23
K ot N —Mp_1
<3002 > @@ lglolikle
k=1n1<-<ng_1npg>2F4ng_1
nj—nj_1§2j
K ) , gk—1
<c> M (%) lllinl < CEliglolialo.
k=1
The series converges since %2 < 1.
The final step is the identification of the main part in (6.15]):
Proposition 6.6. Fiz ny := (n1, -+ ,nk) an increasing sequence of integer. Then

DfnkJrl

| M), sl () = 2o [ M D@, 01)

(nk —1)
XAT(VnK>V[nk—1]) dl/[nk,l] dT[nk,l] d$1M®nk ank.

(6.18)

Proof. We fix for the moment the collision times (7;);).
We begin by developing gy, :

(619) ZJ(T) /(GO h(z(l)(th))gnk (ng (OaT))AT(VnKaV[nk—l]) dl/[mc—l] dT[nk—l] dI1M®nk dVi,
T T

ng
— Z ZU(T) /@ ) Wz} (t,T))g(zg, (0, T)AT (Vi s Ving —1)) AWy 1] A7, 3 dag ME™ AV, .
qr=1 T T

Definition 6.6.1. Fir a collision tree T' := (qi, @i, 3i)i<n,—1) and a particle qz. We say that a sequence
(i1, ,i¢) is causal if

7;1 << 7;[7 V] < ‘€a {Qijchij} N {qij+1aqij+1} 7é (Z)
A particle g influences the particle 1 (respectively qy) if there exists a causal sequence (i1,--- ,ig) such
that q € {qi,,Gi, } and 1 € {qi,, @i, } (respectively qf € {qi,, @i, } and q € {qi,, i, })-

If there exists a particle ¢ which has only one collision 7 and which does not influence both particles 1
and qy.
We use now the application =% defined in (6.13]). We recall that

ErEr B (Vaso Vinge—1) = (Vi = Vg (17, Pnge—1))-
In a second time, for a fix (V. , V5, —1]), We perform the translation 21 +— #; := x; (7). The Jacobian
of ELE . EL s
AT(anpV[nk—l]) dV[nk—l] dl‘lM@nK anK — Ag)(VnK,V[nk,l]) dl/[nk—l] diflM@nK df/nx'

We start now the velocity process at time 7;,~ with V,,, (7;7) := V,,, and

Agf)(‘}nKyV[nk—l]) = __ ((ng' (T]+) — Vg, (T;_)) ’ Vj)+ H ((V% (Tj_) ~ Vg (Tj_)) . Vj)— ’

We pair T with the tree T as
(45,a,8;)  forj#i
(qj,(jj,fgj) fOI‘j = 3.

e
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Then o(T) = —o(T), and for same VnK,T[nK_l],l/[nK_l] we have 20(t,T) = 29(t,T) and 20(0,T) =
zg(O,T). We have Agf)(Van[nru) = Ag)(VnK,V[nk,l]). Thus

o(T) [ W) 0.TIA WV, vy dar M AV,
= _U(T) h(z(lj(taT))g(zg(oﬁf))A(anv dy[nkfl]) dJ"1]\4®nk dV”lk

0
GT

Hence, it remains only in (6.19)) the trees such that every particle influence both 1 and gy. The other
terms are exactly compensated.
For a remaining tree T = (g;, §;, ¥;); we can construct the sequences

Go :=4af, Gng—1 =1, {G:} ={a, @&} N {qi1. @1}, {3} = {a @} \{@}

and

. 1if ¢; = gi—1
i { — 1 else.

The sequence (gG,); encodes the order in which particles collide. In addition, we can reconstruct 1" for
a given sequence (8;, 5;, . )

We can reorder the particles such that ¢, = nx — i (there are (nx — 1)! possibility).

Finally, we have to identify the four possible (§;,3;); with the four parts of %,: (1,1) with g(v')
(we follow the same particle which is deviated by the collision), (1,—1) with —g(v) (we follow the same
particle which is not deviated by the collision), (—1,1) with g(v.) and (—1,—1) with —g(v.). There are
(nx — 1)! possible sequence (4});.

We conclude that

1 n
mZU(T) [go W2 (8, T)) gy, (Z3,, (0, T)A Ve AW, —17) daa ME™ AV,
T T

= / h(2)S(t — Tnp—1)LaS (Tnp—1 — Tnj—2) - - - Lo S(11)g(2) M(v) dz.
D
We obtain the expected result by integrating with respect to (71, , T, —1)- (I

Combining the preceding proposition and the estimations (6.17)) and (6.14]), we obtain:

6200 G0 = [ gt M) dz+ 0 (% + K2 (S bl o)

7. ESTIMATION OF NON-PATHOLOGICAL RECOLLISIONS

In the last two sections, we estimate the error terms where the pseudotrajectory can have a recollision.
We begin with the case of non pathological recollision.

) 1 _

Gl = > X >R vt (2, (1) o)t
0<k<K-1 (nj)j<w Npp2>Ngt2 >Nk v g,
1<K <K' 0<n;—n;_,<29

g
where t — t, = kO + E£'0’.
Proposition 7.1. For ¢ small enough,

(7.1) |Gt (@)] < |lgllR]e™/>(Cey> " +2ete,

It is sufficient to prove the two following estimations:

Proposition 7.2. Firk € N, n:= (ny,--- ,np4o) € N¥. Then denoting
_ 1
> t—ts o E : > t—ts
(72) \Ilﬂk+2! [h](an+2) T nk+2 s \I/ﬂk+2 [h}(ZU[nk-pz])?

k+2
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and fixing 1 = 0 we have

>t ts e e
(13) [ sup Uzt e, Zu )| Vi dXas
y€eT (2m)~d
Seq( D|)|hkf 1an+2520(nk+gfnk73)+tnk+9+d€a’
p0) k42

and, for m € [1,ng12],

(7.4) / sup (Wt te (] @ Ut e [h] (try, Zongymm) | MEC 27 qVo, - dX s 20—
ye

mt [[72] ’
< H e ( ) 0 - Come+2 | §29(net2—nE—3)+ymrtnr 2 +9+d
npto [0)THk+27

Using these estimations and Corollary

E. [M—é 3wt (2, )¢ (g)ﬂrs]

K3
Ng42

’I’L

1
< HhHOHgHO (6é+a9(nk+2—nk—2)+62tnk+d+9 + (eae(nk+2—nk—2)+62tnk+d+9+m) 2)

Nkt2— 1

2 (Pht2—nEp =24 np4otng
< llgllollhllode® C™+2(§) 2 Ly~ do

a (npqo—nEp—2)4
< ligllolIpllode (GE)™ 49 () CHE

Using that €2 <1 and K'0 = 60 < 1, we can sum on k, k¥’ and n;,

a (g2 np =24
Gt >0 Y > lgllolinflode® (Gt (S T
1<E<K—-1 ni<-<ng Nppo>Npy1 >N
1<K <K' mj—n;_1<2
< llgllollnllo K82 &I (> +4+9
K
< llgllolIflog ® (G3t)*" T4+*
This conclude the proof of | .

Proof of (7.3). We recall that the pseudotrajectory development takes the form
1 ’nl* k
St—tsp] . _
\I’QkJrz [h] T (nk+2 — 1)| Z H Sk h Zq ’ 7{q}' w, ( ) )) %’?q; w"S(g Y H ]ln(tsz):ni-
lewC[ng42] k=1 i=1
|wl=nkt1

(Si)iﬁni+2—1

Here %’{z}t té( D is the set of initial configurations Z,, ,, such that the pseudotrajectory has

k42
e 1 the final particle at time t — ¢,

e w particles at time 6,

e at least one recollision,

e with no pathological recollision (thanks to the asymmetric conditioning).

Lemma 7.3. There exists a constant a € (0,1) such that for any n, k' and (s;);,

(75) /1‘%{1; wf?S y M ®Tk+2 d)(g’nkJr2 ankH

' Ngt2—1
< c’ (m> (nk+2)nk+2629(nk+27nk72)+tnk+2d+4€a.
Proof. We may define the clustering tree T~ as before, by looking at collisions in temporal order and
keeping only the clustering collisions. However, this will not be sufficient to characterise the initial data.
Let (gq,q) (with ¢ < @) be the first two particles having a non-clustering collision, 7¢ycle the time of
this collision, and ¢ € [1,ng42 — 1] such that 7oycie lies between the times of the c-th and the (¢ + 1)-th
clustering collision. The parameters (T, (¢, q, ¢)) provide a partition of the set of initial data.
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We denote
(Ti)i<npsro—1> Ti < Titl,
. Vi < Npro — Npy1, 75 <6
Npyo * . ,
Vi < ngyo —ngl, 75 < KO
Ve<Ek, j<Ngro—Ngio—r—1, 7; < k'S + (L + 1)9
For a given initial data Z,, we denote T := (g;, ¢;, s;); the clustering tree, 7; defined as the time of the

i-th clustering collision and v; := (xq, (7;) —Xq, (7)) /c. We denote T, , x QSE;?S(S,)A the image of the set

of initial datum %’af Wts(; N{T is the clusturing tree} by (Xan, s, Vi) = (Tigra—1]s Vinero—11 Vari2)-

67%"k+2
/n%m o ———— dXa ., ,dV,

{a},w,(s;); (271_) nkzzd yM k42 Nkt2
Ngt2—1
,uD JrereT [ Z/ >,t—ts, T H |(vg, (i) — VZ; (7)) - vi| dv; dr M®nk+2dv’nk+2
Tnp o XG0y i)y i=1

If the first recollision involves particles ¢ and ¢ at time Tyoc €]7, ¢, Ter1[, We consider w C [ng12] the
connected components of {q,¢’} in the collision graph on time interval [0, Tyec) (it only depends on ¢).
As before the first recollision, the pseudotrajectory Z¢ (7) and its formal limit Z,(7) are closed up to a
translation (thanks to Lemma : there exists a yp € T such that

nk+2—1

2 \%
VT € [0, Trec), X0 (T) — try, XE (7)] < Z } N2 VE

Vg, (T ) — Vg (Ti_)| .

Hence, if there is a recollision,

Ngt2—1

(7.6) ) =gl <24 3

2nk+2V5
|VQ1 V(Ii( Zi)’

We can only study the limiting flow and define a recolhslon as "there exists a time Ty such that (7.6|) is
verified: we have

>,t—te,T 0
Tﬁkw X ®{q},w,(s,1) - Tnk+2 B \‘Zﬁk+2 x B
Using the Lemma [B:2] we get
—,
3 [ e dXo dv. Swtnk—lg(”k+2_nk_l)+el/4
ZLaY i (2 )—"’“32‘1 B (T L
(7.7) 4
(Cnpya)™r+? nk—1g(nisa—nx—1)4 §2,1/12
T (o)t

using that § = /12,

T7

T6
T5

T4

T3

T2

T1 A

FIGURE 9. Example of construction of a clustering tree.
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We obtain the expected result by summing on
(8i)i<npia—1 € {:I:l}”’“*rl, wC [Ngta), ¢ Ew
and dividing by ngya!. O
Proof of . We use first the same bound as in the previous Section

>, t—ts > t—ts
(7.8) |t (] @ W5 (B (Zanamm)|

[Al1? (nkge —m)Pm!
= (ngs2")? (2ngeo —m)! Z Z ]l:%’?q; w“(S )(ZG)))
UG =[2nkyo—m] qEWCW ¢ ew' Ccw’
|@|=|&" |=nkt2 |w|=nk41 |w/|:”k+1
Si)i<n;io—1 (

’ .
Si)'LSni+2*1

X ]ln(k’é) nk]].@> t—tg (Zg)/)

@'} (5))
where n(f) is the number of particles at time 6 in the pseudotrajectory Z(7). Note that the formula is
invariant under translation. Without loss of generality, we can suppose that We can then fix z; = 0 and
integrate with respect to the other variables.
Using the same strategy as in the proof of , we have

ng—m
/]1%> t—ts (ZQ,)Q*%%nkJﬂ—m dZ@/\@ <C () tnk+2—m(2nk+2 — m)nk+2—m.

{a'} .’ (sh); ©o
The sum on the remaining particles is estimated using (7.7)

/]]. > t—tg (Z’/)1<@>,t—t5 (Z )— Xm,an_'_zfmd‘/an_;_gfm

w —
Ha'w! (sh); {a}t,w,(s;)q (271. M

(O2nk+2)2nk+27m

(MD)an+2—7rL—1
We obtain the expected result by combining the two estimations, summing on the possible parameters
((si)i,0,w,q) and ((s;)i,@",w’,¢') and then dividing by (nri2)??. U

520(ne+2—nk—=3)4 ymitngy2+9+d

8. ESTIMATION OF THE LOCAL RECOLLISIONS

In the present section we discuss GE°>2(t) defined by

1
GEP() = Y > > fcz?(g)ﬂr
0<k<K-1 (nj)i<k Ng42>Nk41 >Nk K
1<K <K’ 0<n;—nj_1 <27

X Z (I)7Lk+1,7lk+2 Tbk:fié[h] (ZZ"kJrz (ts))]

*"k+2
for ty :=1t— kO — K'4.
We will prove the following bound:

Proposition 8.1. For e > 0 small enough, we have

(81) Ge2)| < Cllllglox2 (1)<t
In the following, we denote
.y 1
k — s -
q)@k+2 (an+2) T m Z q)ik+1,nk+2 \Ijngrl [h] (Za[nkJrz])
O’EGnk+2

The aim of this part is to prove the following bound on <I>nk 7

Proposition 8.2. Fizny <+ <ngyo < p. Form € {1,---p} we have for x1 =0

e ‘%oﬂk+2(Z"k+2)
(8.2) /wp ’(I> try Znyis) | — dZ3 ., dvr
yeT (2m)"%

< (ua|)|ill|321 C"k+2 525a0(nk+27nk72)+tnk71’
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R Ca—

(8.3) / sup|‘I>nk+2 B O (try Zony p—m)

N o dZ2,2nk+2—m dvy

d(@ng4o—m)
2

™
—1 2
< /J/m (( )h”O lcnk+2> 525a0(nk+2—nk—2)+tnk—1+nk+2-
- on )42
k42

Using the estimations (8.2) and (8.3)), one obtains

E. lu‘é Z ‘PZW (Zi,, () C?(g)hs] )

4
“Mk42

D

(@@ (gyriee) )

(Mpy2—np—2)4
2

< lgllolImlloC™+2 ((§)2(§) sz =me=2r (e
8
0
a 2
< g% [[nfollallo €™ (59) (&),

as £2 /0 — 0.
Using that Catf <land K'6 =6 <1, we can sum on k, k" and n;_,

(npyo—mnK—2)4
[AEOIESED DS S lglolikllode® (S (S T
1<E<K -1 mi<-<ng Npyo>Ngp41>ng
1<K <K’ nj—n;_1<27
< llgllolInllok"oe® K57 (Gt)2" ++o

K
< llglloliAlloe (G3)*" +4+*

This conclude the proof of (8.1)).

Proof of (8.2). We recall that

— 1
k — >.5 -
(I)ﬂk+2 (Z"k+2) T (nk+2)! Z (I)nk+1;7lk+2 ‘Ilﬂk+1 [h] (Za[ﬂk+2])
0€6n; ,
In Wpt—ts 76‘1)25“@“2 (1] (Zny,»)) we see three sets of indices:

e 1 the last particle,

e [1,n541] the set of particles in "final" tree pseudotrajectory development,
e [np41 + 1,nk42] the particles added in the first time interval.

Any permutation ¢ which sends [1,nx11] and [ngy1 + 1,n%42] onto themselves stabilizes the function

\1,91;1:5 _‘S@%;il,nkw [h]. Hence, @ZHN(ZP) is equal to
(e — D! (kg2 — nieg1)! > —to—s
(ng +2)! Z (I)"k+1mk+2 ﬁkH [h] (qu’Zwl\{q1}7 ZWQ) .
k ’ wiUwo=[ng42]
i
Let us develop \I/?lf+f ’5<I>9Lf+1 ness M- For (s;); € {F1}m+171 (wy,wy) a partition of [ngie] and
(A1, , A1) a partition of [ngyo] with w; C A;, we define the pseudotrajectory Z(r, s Q1> W1, W2,
(si)i> (A5);) by
e for 7 <94,

Z(T) = Z(Ta iy s ()‘J)])

e for 7 > 4, the particle of w3 are removed and

2y (1) = Z(1 = 6,20, (9): {q1}, (50):).
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Then ®F (Zn,,.) is equal to

Npyo

(nk1+2)' 2 Z(ZZ Zm> (2, (KO + K'5))

wilwe=[ngy2] (s:); \1=1 A1Dwi (A2,

|wi|=nk41 e~
q1EWL “’2\A1
Ngyo2—1
X 170y hasa H Si1 jyo.ko+(k— s ( H Ta(t—i0)=n;
pathology i=1 RERR
on [0,0]

X (@Z(ZA“..- 7ZA1)A‘[7>\”\ (Zy,) HAP‘\ Zy, ))

1=2

The functions @ and A are defined in Definitions and (they are define on a time ¢, here it is
replaced by a time 6).

The function @;(Zy,,---,Z»,) can be bounded by the Penrose’s tree inequality (see for example
[BGSRS20, Jan]),

@1(Zx,,+20)| = Z H Ly e, = Z H LW

Ccee(ll]) (4,5)eE(C) Te7 (1)) (4,5)€E(T)

The set .7 ([l]) is the set of minimally connected graph with vertices [1].
We explain now how to take advantage of the pathology of Z(-).

Definition 8.2.1. For r > 3, we define the set 0, as
(8.4) O,:= {ZT eD", (w1, - ,m), the collision graph of Z,.(-, Z,, (w1, -+ ,@1)) on [0,0] is
connected and the pseudotrajectory has a pathology}.

We recall that a pathology can be an overlap, a multiple interaction or a recollision (see the Definition
3.1.1)).
For r =2, we define

(8.5) Oy :={|z1 — z2| < e} U{|(x1 —x2) + I(v1 — v2)| < €}
Finally for @ C [ng12], the set Oy is defined as
(8.6) O i={Znpyy ED™2, Z € Oy}

The O allows to control the recollision condition

]12(~)hasa < Z le,,.

pathology Clng
on [0,4] @C k2]

This leads to the following bound on ’<I>

Npyo Z’nk+2) :

(8.7) M Z Z Z (Z Z Z (@Okﬂ-#(k 1)5(Zwl(5))]1n(k/5)=nk

' S,
(e 2)! wilwe=[ngt2] wC[nrt2] (s:); \1=1 A1Dwi (A2, A1) fanh (i
|wi|=nk41 ep'~!
q1€wW1 w2\ 1
[nk1]
TR YN | ENSCEER) | ESEN))
Te7 () (4,4)€E(T) =2

Note that the right hand-side is invariant under translation. Thus one can fix ;1 = 0 and integrate
with respect to the other variables.
We introduce a partition to control the pseudo-trajectory in the time interval [0, ].

Definition 8.2.2 (Possible clusters). Given Z, € D"+2 we construct the graph G with vertices

Nk+2 S
[nit2]. The pair (i,7) is an edges of G if and only if there exists & C [ng42] and (A1, 5 \e) a partition
of @ such that the collision graph of Z(-, Zz, A, )\4) on time interval [0, 8] is connected. We introduce

p = (p1,---,pr) the possible cluster partition as the set of the connected components of G.
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We define 9% c D2 qs the set such that p is the possible cluster partition. The (@EB)B form a
partition of D™k+2,

By definition of the potential cluster, a particle cannot interact with a particle of an other cluster for
any time in [0, ). Thus the systems p’ are isolated on [0, 6] and all the dynamics in [0, §] is encode inside
The parametrization of the pseudotrajectories is changed to a more adapted one. There exists a p;
containing ww. With a little lost of symmetry one can suppose that it is p;. In the same way for any A;
with j # 1 there exists some p; containing A;. For any p;
o W= (wi, wb) the partition of p; defined by w;- := w; N p;, note that the set w} cannot be empty,
o Ni={X\ =\ N pi} U{A; for j > 2 with A; C p;} a partition of p;,
o fori>1,p; := (" \),
® p1:= (Q17élaw)'
The set of possible p; is denoted FB(p;). Because p; is of size at most v, there exists a constant C,
depending only on v such that |B(p;)| < C,. For a fix partition p, the map (w,w, A) — (p;); is onto.
The possible cluster partition also contains the overlap: if we denote two dynamical clusters A; and
Ajo with j, j* > 2, there exists a p; containing both, and if A; C p; has an overlap with Ay, then \; has
in 7%,

an overlap with \i. This last property allows us to rewrite the overlap cumulant: for any 7,

- Z H 1&‘&)\]‘

Te7 () (5.7)eE(T

k+2

’wl(ZAu te 7Z>\l

—

<11 T tee. H! (1A
i=1T,€

FZ(X) Gi)EET) im1
The right hand-side is bounded using that

[pil

[ ZUXD] < XX < o,

(see section 2 of [BGSRS20]). As the symmetric conditioning imposes that |p;] < 7, the cumulants
‘7/11(ZA1,~ . ,ZAI)’ are smaller than y™%+2,
We have now the following bound

Nk+2 NEk+2 r

68) |(f£,k+27p(2p)’ . k+2||h||0 Z Z Z Z 100 v(ZnHQ)HApl(Zpl)

nk 2 ((s4)
P2 a=1r=1pern, o G o

el}‘n( pi)

where we denote
AP1(Zl)1) = ]]-ﬁw]]-

Zp1 form a possible cluster ’

Vi>2, Ay (Z,,) =1 and

Zp; form a possible cluster

PP P 0,k0+(k—1)6
%(Sz‘)i T {Zp € Js, L0, (0) € %{QI}v(si)i }

The same method than in [BGSRS22¢]| is used to control the condition 1 s

((s3)4
For a pseudotrajectory Z,, +»(7), consider its collision graph ¢ ?&uz I Then, we can construct the

graph G by identifying in %Lléwi ) the particles in a same cluster p;. Finally we can construct the
clustering trees T> := (v;, ;)1<i<r—1 Where the i-th clustering collision in G happens between cluster p,,
and py,.

We need to count the number of clustering collisions of T~ happening between time § and time %’d.
If r > ny, all the r — 1 collisions in T~ cannot correspond to the ng — 1 collisions of the time interval
[£'0,6]. Thus, at least (r — ny)+ collisions happen during [4, £'6] C [0, 26).

One needs a different representation of collision graphs. Let Ly be equal to {{1},---, {r}}. The L;
and (v(;, U(;)) are constructed sequentially: suppose that L; 1 = (c1,--- , ), the (c;) forming a partition
of [1,7]. The i-th collision happens between cluster v; € ¢, and 7; € ¢,. Then:

o L;:= (Li_l \ {ca,cb}) U{ca Ucp},
° {V(i), D(i)} = {Ca, Cb} with max V() < max (.
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A

FIGURE 11. An example of construction of the representation (v(;), 7;)); from a cluster-
ing graph.

The (1), ¥(iy): define a partition of .7~ ([r]) (the set of ordered trees on [1,r]).
We performed the following change of variables:

Vi € {la o, = 1}; Ti = Tminvy — Lmin vy X = trfwmh,pi Xpi7
X2,nk+2 = ('jl e 7i'r—1aX1’ e aXr)-
The condition %(Bs’ ,E), is integrated first with respect to (&1, - ,Zr—1) where relative positions inside a

cluster X; are kept constant. The (A,,); will be sum later with respect to the (X;);.
Fix 7,41 the time of the (i4 1)-th clustering collision and the relative positions &;_1,--- , 4. We define
the i-th clustering set

Bi:= |J B
qewZ,V(i)
QEWI,D(,L)
J J
with Wi,u U wi, W15, U Wy,
JEV(s) JED ()

B =

i € 0,Tis1 AT, [Rq(ms) = %(7:)| =<

and T; := 26 for the the (r — ny)y first collisions, ¢ else. We used that w; U ws is the set of particles
existing after time 9.

Up to time 7; the curves x, and X; are independent. Hence, we can perform the change of variables
Z; — (7, m;) where 7; is the minimal collision time and

_ X(7i) — Xq(7i)
[%q(Ti) — %q(7)|

1| (Vg(7s) = Vg(m3)) - 1l dri dis.

i .

The Jacobian of this diffeomorphism is
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As the particles in w vy and wy p ;) are isolated during [0, 7;], their energies are conserved . The sum
of relative velocities can be bounded by
Yo () = V()] < N, (1)

qewl,u(i)
46w1,17<1.) S (

_Wl,D(i) (Tl)

Ve, (7))

Ve, () (

Using the same method than in the proof of

2 = '%’T“l’"m‘ (Z‘“l’"u) (6)> = %’\Wu)l (z’\l*%’) (6))

11—
5 Ve, ()
where we denote

Mg, = | J M.

FED ()
At time 6, the particles in two different clusters cannot interact (by definition of a possible cluster),

Ay | Do, ) = Y Ay (g (0) = D A, (23(0) < D Ay 1(Zp,)

JEV @) JEV () JEV ()
We conclude that

> 1) =l <4 Y (e
(89) qul,um Vi EV(s)
qEW1,p ;) Vi€V (i)

+ ol Zps,))-

+ %pVJ(ZPVi )) (|p17i

This gives the following bound on |B;| (using the Boltzmann-Grad scaling 0%~ = 1)

C tip1 AT
Bil< D SIAHERACS]
O Jo a,q
i1 AT,
<5 5 (ol (20 (s + A (20) [
Vze'/( )
Ui V()

Permuting the product and the sum,

S TL S (il 20 (1] + i Z0)

(Vi) Piy)i =1 Vi€l ()
+ %pui\(zpw)) (|Pm

DiED(;) r—1
= > H(Ipw

(Vi»Di)i =1

+ %ﬁﬂi \ (Zpai ))

Using that
(a+b)! < ga+b

Va,b e N, 2Tl

we have
tneAr—1 Q(T*"k)Jr tnk/\rfl0(1'77%)4r

t toAT>
dtp_q1--- dt; < < QM2 7
[t [ < e e S o=

We can sum now on the clustering collisions:

/ﬂﬁg,g diy - dip 1 <) /dﬁ;’l]lgl/ dfc’g]le-~-/ diy_11p,

(Vi) Piy)

g(c)” [ [Ty T (121 + i Zo ) (0] + A 20,)

VL7V’L)i =1

(r—1)!

C r—1 jppAr 10(1‘ nk)
g(z) ey H(\pm\wm,mzpui))(\pm+f4p,;i|<ngi>).

(vi, i) =1
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We can forget the order of the edges of T~ = (v, ;);, which gives a factor r!. Secondly, denoting
d;(G) the degree of the vertex i in a graph G and .7 ([r]) the set of minimally (not oriented) connected
graphs on [1,r], we can write the preceding inequality as

2, 2C nrAr—1p(r—n : di(T)
/]1 o dZy - dEp— l<</w) A=l gr=rni) ¢ Z H(\Pi|+%ml(zpi)> .

Fes Te7 ([r]) i=1

For A,B > 0, z € R*, there exists a constant C > 0 such that

NS

(At+a)e < (48)%e

We use this inequality to bound
/1%£=£ 6_%ﬂnk+2(Z”k+2) dzy - dar—q

(84)5
C r—1 r di(T) .
< <> tnk/\’l”fle(l'*nk)+ Z H (|Pi| +’}ﬁpi\(zﬂi)) e -3 Hp:1(Zo;)
T ([r]) i=1

~ tnk/\r 160(f‘—nk
< O'"k+2

> Lo,

(po)= Te 7 ([r]) i=1

As the sum of the d;(T) is equal to 2r — 2, we have by convexity of z — zlogx

i: d;(T)log d;(T) < rzz:lrdi(T) log Zf:lrdi(T) < (2r —2)log?2

i=1

and |7 ([r])| is equal to r*~2
/]1@5,3 o~ 31t (Znyps) dzy - dép_y

“si)i
CN T i aten W) e g
< (W) tTe g k) Z l_[(|p1|+<%ﬂZ 7)) e~ 3 2ui=10p;1(Zp;

Te 7 ([r]) i=1
~ tnk/\r—le(r nk)+
<O —— — — (r—1)!.
B (o) =1
We can integrate now the condition Ap,(Z,,). The particles in Z,, have to form a possible cluster.
Because clusters are of size at most ~,
Cr(smin{llpllfl}

(8.10) /’Jr\ml 1 (Rd)‘pl‘Apl(Zpl) (zw)d\p“/z dX dV (Ho)lpﬂ—l e,
. I Mz e ax v, <o, (2)
Tloil=1x (RAYlpsl il (2m)dlp i o

The second inequality is a clustering estimation, similar to the ones threaten in the proof of (5.2). In the
first inequality we use recollision estimates as in the proof of (|7.3). The proofs are given in Appendix

B4
Integrating the A; leads to

/1%(3;2). (an+2) I | Api(Zpi)M®nk+2 (Vnk+2) dX27nk+2 dvnk+2
v i=1
tnk/\r—lg(l‘—"k)+ r ( ) )Pz‘—l 5max2,\p1\—1 .

< (r— 1)iCm™ o L
str=1) ()1 on ()1
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Any particle removed at time ¢ has a clustering collision during [0,4]. Therefore > :_, (|p;| — 1) is
bigger than ngo — ng. In addition we have chosen 6 bigger than § so

efjf"k+2(znk+2)

/]]‘%ﬁ'ﬁ (Z”k+2) H AP@(ZM)TM dXQa"k+2 ank+2
(si)i i1 (27T)T

<o
- (po)resa=t

We sum now on the parameters (s;); and (p;). Because size of possible clusters are bounded by =, the
|B(p;)| are smaller than some C, > 0 depending only on . The number of collision parameters (s;); is
equal to 2"%+2 and

nkflg(nk+27nk,72)+ 6260..

/|(T)Zk+2 (an+2)|M®nk+2 dX2,nk,+2 dV’I’Lk+2

N2
< ”h”(CC’Y4’y)nk 1 1= 19(’ﬂk+2 ng— 2)+52 a Z Z I‘—l
Ng2! ()42 r=1 pcr,
k42
The last sums can be bounded by
s s Npga!  (r—1)!
nk”lz Z (r—1)! anlz Z kil k!l
r=1 pe&y r=1 ki+-+kr=npi2
+2 >1
Nk +2 1
Nk+2
<> > klg...krgge
r=1 ki+-+kr=npi2
ki>1
This ends the proof of the first inequality. a

Proof of (8.3). As the ‘i)g“z are symmetric, it is sufficient to study

=1/

=k k
(8.12) |<1>ﬂk+2(z[nk+2])¢>ﬂk+2
The bound leads to

Bid<——5 > > > > Lygo.os. >1( wr (O Lgores  (Z'0y (9))

{ Yo (s%)s
(‘ZI;W1W2) wC[ngy2] (si)i (>\1, ,A1) “

(Z[nk+2+1*m,2ﬂk+2fm]) ’ .

(grwiws) (s9)i (A1, D)
X ( Z H ]l/\ifs'ijRerl] Z>\1 HA‘)\ | Z)\ ))
Te7 (1) (4,5)€E(T) =2

1
><< > 11 Ly 2, Z&‘[Z?“ Z/\’l)HAM;(Z/\;)> Lo(k/s)=ns Lo, -

e (V) (4.5)eE(T) i=2

where we have denoted .7 (o) the set of connected and simply connected graphs with vertices o, a finite
set. The sets 0 have been defined in Definition In addition,

e q1 € [ng42] and ¢ € [ngy2 + 1 — m, 2ng10 — m],

o wilwy = [nk+g] wiUwh = [ngy2+1—m,2ng0 —m], ¢1 € wi, ¢1 € wy and |wq| = |wi| = ngt1,

o A\ Dwi, A} Dwi, (A2, , A1) an unordered partition of [ngyo]\wr and (A, - -+, A]) an unordered
partition of [ngio + 1 —m, 2ng e — m] \ wi.

The pseudotrajectory Z(7) (respectively Z’(7)) begins with coordinates Z,, , | (respectively with coor-
dinates Zn, . ,+1-m,2n,,.—m)) With parameters (qi,ws,wa, (A1,--+, A1) (vespectively (g7, w],ws, (A, - -
A))) in the same way than in the proof of (8.2).

Note that the right hand-side is invariant under translation. Thus one can fix 1 = 0 and integrate
with respect to the other variables.

For a position Zay, ., —m, we consider p := (p1,--- , pr) the possible clusters. As in the previous section,

with a little lost of symmetry, one can suppose that w; C p;. We can then construct the parameters
pl = (Q17Q/13A17Al1aw)7 (p2)122 = ((Qlaﬂllvélvélz))

o W' = (w},wh) is a partition of p; N [nx42] defined by w! :=w; N p;,

i

i>2
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- 1€

o W= (W] 1,0.; 3) is a partition of p; N [ng42 + 1 —m, 2nk4o + m| defined by w’i = w} N pis
o )= {)\1 = X1 Np;} U{\; for j > 2 with A\; C p;} a partition of [ng12] N p;,

o V= {)\” =] ﬂpl}u{/\’ for j > 2 with /\ C pi} a partition of [ngr2+1—m,2nk1o+m]Np;.

We denote now JB(p;) the new set of possible parameters p; (this will not create a conflict with the
previous section). Because each cluster p; is of size at most v, [B(p;)| is bounded by some constant C.
depending only on 7. Defining

Apl(Zm) = ]lZpl form a le,, Viz2, Api(Zpi> =

possible cluster possible cluster

Zp; forma

s — {zmﬁ,m € DL, Zoo g, (0) € BVFOTE-VS 71 () ¢ %° ’“9#““—”5},

(si)i(s})s w1,(8i)s Nk+2 wi,(85)4

we have as in the inequality (8.8)

2(y—2)ng42 9 2nky2—m r
gl 12115
=TS S S e T
r=1 o pEDy (s (s POV i=1
pE[TB(pi)

Note that, for at least one i, w’ is not empty. We are now constructing a clustering tree in order to
estimate .%(BS’,E)' (51"

Consider the collision graph associated with the first pseudotrajectory %,IUwis and the graph asso-

[0,6—t.]
Ul
only the first clustering colhs10ns we obtain the oriented tree T := (v;,7;)1<i<r—1. Note that these
clustering collisions can happen in the first or second pseudotrajectories.

As in the proof of we have to bound the number of collisions of 77 in the time interval [0, 27].
There are at most (ny—1+ngo—m) collisions during [(k'+1)d, t—t5] (nx—1 for the first pseudotrajectory,
and we have to connect ny42—m particles in the second). Thus, there are at least (r—(ngy—1+ngro—m)) 4
clustering collisions in [4, (k' + 1)d] C [0, 27].

We explain quickly how to estimate the i-th collision. As in the previous paragraph, we construct the
modified tree parameters (v(;), 7(;)) and the change of variables

ciated with the second one 54 Merge them and identify vertices in a same cluster p;. Keeping

Vi € {la e, = 1}; Ti = Tminvy — Lmin vy X = trwnm,pi Xp

i

Xoonppo—m = (L1, &Bp1, X1, , X3,

and we integrate on the (&;).
The clustering set B; is defined as follows: fix ¢;,11 the time of the (i 4+ 1)-th clustering collision and

the relative positions Z;_1,---,Z1. We define the i-th clustering set
Bi= {J (BruBe)
qujeu(i) Pj
EEUJ’ED“) P3
with
BIT = {a: | Iri € [0,tisa AT, [Rq(m) = %q(m)| = ¢},

where T; := 26 for the (r — ng)4 first collisions, and ¢ else. The set B/q’q is defined in the same way for
the other pseudotrajectory. We can apply the estimates of the previous paragraph:

R 20 Tip1 AT
[ 1m0ai <25 S (Il A Z0) (I + A (Z0) [ am

Vi V()
D€V (3)
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In this way, we end up with the same situation as in the estimate of (8.2), and we can apply the same
strategy:

e—Jﬂgk+27m,(Z2n,k+2—WL)

= 1! = k!
/ |¢ﬁk+2 (Zk+2)cbgk+2 (an+2+1*m72nk+2*m)| (27_‘_)2”,6_*_27771 dXQ,Q”k+2*m dVYQle+2*m

(2ngp2 —m)!||A)?

an+2528a7_(nk+gfnk72)+tnk71+nk+27m
= Gl Pt

IN

—1 2
‘um ||hH C«nk+2 52€a9(nk+27nk72)+tnk71+nk+2
s )T

which concludes the proof. O

APPENDIX A. THE LINEARIZED BOLTZMANN OPERATOR WITHOUT CUT-OFF

In this section, we construct the linearized Boltzmann operator associated with the power law 1/7%
s > 1 and we explain where the scaling 0, o = a?/% comes from.

We begin with a change of variables in the definition of the Boltzmann operator .%,. For (v, v,,v) we
define

(A1) pi= % € span(v — v,) "
the impact parameters, with the Jacobian
(v=ws) V)4 dv = |v — v,| dp.

This allows us to redefine the post-collisional velocities (v',v,) for an interaction potential %

(v/,0) = Jim (va(t), (1))

(A.2) %(ma,xb) = (Vq, Up), %(Ua,vb) =a(-VU (xp — x4), VU (T — x4))
(v (8),0b(0) = (v,0.), (v — 1) A (2 = 22) = o — 0.7

With this definition, the scattering map can easily be defined for a not compactly supported decreasing
potential.
For A > 0, we make the change of coordinate

(t, Ta, Toy Va, Up) > (£, Ty Tty Vay V) = (A, Mg, ATh, Vg, Up)
In the new coordinates, the equations of motion become
(0 0) = (90, %), 5 (00, ) = o (-V% (P52) , VU (255))
Hence, the post-collisional parameters associated with (v, v, p) and potential % are the same than the

ones associated to (v, v., A\p) and potential % (-/X).
Performing the change of variable g — a~'/7 in the collisional operator gives

: oy ()
2 Ly g = La. g, where Uy (r) := a¥ (ra'/®) = ——2~.

TS
This new potential converges when o — 0 to Z*(r) := 1/r°. It is natural to guess the convergence of
the operators
1
mga — g%s .

APPENDIX B. GEOMETRICAL ESTIMATES
B.1. Estimation of the length time of a collision.

Lemma B.1. Let ¥ an interaction potential which is radial and supported in a ball of diameter €.
We consider two particles, 1 and 2, with initial coordinates

(ZL’a(O),Ua(O)) = (Oavl)a (xb(O),vb(O)) = (61/, U2)a ve Sdila (Ul - 1)2) v < 07
following the Hamiltonian dynamics linked to
_ Jval? + [w]?

H = DO+ Y (2, — ).
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Then the collision time is bound by

(B.1) T :=inf{r > 0 |za(r) — 2(7)| > €} < m%v?
Proof. The motion equations can be written as

jt (X + xp) = (Vg + vp) % (Vg +vp) =0

L (2a —2) = (va — ) 5 (Vo —vp) = =2V (24 — 21 -

Hence, T' does not depend on v1 + vs.
We use the impact parameter p := |j] defined in (A.1). The time T, is given by (See chapter 8 of
[GSRT13))

dr
B.2
(2 Mmm o
[v1—v2|?
with 7y defined by
2 4 Tmin
TR G Y
min |’U1 — ’()2‘
We begin by performing the change of variables
2
P 7 (r)
B.3 = 22—
(B.3) b r2 |vg — val?

which implies

2 Lowdu T
(B.4) r— | :
V| p/g</71—u2gf V()

[v1—v2[?
Using that #” is non positive and that v < 2,
.2 1duur3<2/1 du@< 2 /1 p du
v =l Sy VI—uZ 02 T n =] Jpe VI—u? p? T o =2l ) w?VT =
The variables are turned into = = u/p,
2 © owdr 24?2 —p? 2e

T < = < .
lvg —v2l| J, /a2 — p2 |v1 — vg] [v1 — va

2

B.2. Proof of Proposition The goal of this section is to prove the following estimation

Lemma B.2. Let ¥ an interaction potential that is radial, decreasing, and supported in a ball of radius
€.
There > 0 independent of ¥ such that for t = ni0

(B5) Z / o0, (1 - ]]-QSO ) AT( nis Ving— 1]) dV[nk 1] deM®ndenk
o X

T= (Qzaq“-sz)z<nk 1

< CnK (nk)nk e(nk—nk,1—2)+tnk€1/4.

The proof of this lemma is an adaptation of the proof of Lemma 8 of [PSS14]. The estimation is not
optimal. For example, the factor €'/ can be replaced in the hard spheres setting by e|loge|” for some
constant r > 1 (see for example [BGSRS21|). However, optimal estimates use the upper bound of the
collision kernel of hard spheres. Such bounds are verified for more general potential and certainly not in
the limit o« — 0. The proof of [PSS14] (which is adapted from it) is more robust.

Proof. We need to avoid
e an overlap: there exists a time 7 € (0,¢) N 0Z and two particles ¢ and ¢’ such that

xg(T) = x¢/ (1) < ¢,
e a recollision: there exists a time 7 € [0, ¢] and two particles ¢ and ¢’ such that 7 ¢ {71, -+ , T, -1}
and

%q(7) = xg (7)] = € and (xg(7) = xg/(7)) - (vq(7) = vg'(7)) <O
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We begin with the estimation of overlap, which is easier.
As the i-th collision between particles (g;, ¢;) can last only a time W (B.1)), there can be
i\t )TV

an overlap only if there is some 7 € 6Z N [0, ] such that 7; is in the interval
€
|ti (Tz‘i) Vg, (Ti7)|

Hence, the set of parameters leading to an overlap is smaller than

I(7, Vi s Viny—11) =

, T

Z Z/ &9 ]lle(T’VnKxV[nk—l])(Ti)AT(V”K’V[nkfl]) Avpn, 1) dT[nkfl]M@)ndenk
T€8ZN[0,t] k%
151<2£ 1 ’

t Ok grr—19(ne—ng—_1—1)4
< 2

gAT ni s Ving— 1)
=6 np* > Z/ - AWy ) MO AV,

1<i<ngp—1 T 7 Vg, (1;7) = va, (7))

As

AT (Voo s Vimg—1)) r ( . .
) —w e =~ (0400 =) ws),
J#i
we can apply the same estimates as in Lemma [6.1] We conclude that the set of overlap has a measure
smaller than
gcnktnk,ﬁ»le(nkfnk,lfl)_*_
ony*

We treat the recollision now. If the first recollision involves particles g and ¢’ at time 7., we consider
w C [ng2] the connected components of {¢, ¢’} in the collision graph @[0.7rec) . Before the time Tyec, the
pseudotrajectory Z¢ (7) and its formal limit Z,(7) are close up to a translation, and using Lemma
there exists a yg € T such that

nk+271

2nwxV
Vr € [0, Treels XO(T) — try, X ()] < Y KE

|Vz17: (i) —va (Ti_)| .

Hence, there is a recollision if at time 7yec € [0,¢] \ {7 }4,

Ng+42— 1

2ngV
(B.6) 3 q,¢" € [ny — 1] such that [x)(Trec) — X0 (Trec)| < € + Z nK e

|qu ) — Vg, (Ti_)"

We can study only the limiting flow and defining an touch as "there exists a time 7,¢. such that is
verified: we have

Tp, X 67\ T, x 65 C T, x 65 N {at least one touch}.
The first step is to forbid the collisions which last to long. We define &1 C T, x &Y. as

) 3 61/4
& = {Vz <np—1, |ti(7'i ) — Vg, (T, |In1n{1 (76 = Tic1), (Tigr — Ti)} 2> 5 } .
nyV
In & there is a touch if there exists a time Tye such that
(B.7) |x2(7’rec) — xg,(rrec)| < 3e3/4,

and
nkfl

— < - €1
1-1g < ; L (77 vy (7 <=y ) ey () [ max{ (i) (s i

2V
Now fix a collision tree T'. The first touch happens at time 7y between particles gree and gl... There

exists a collision iy, two disjoint sequences of collisions (¢;);<, and ( ) j<pr and two sequences of particles
(a;)j<p, (a )j<p such that

e Vj> 1,4y <ij and ip < i,

eVj>1a;€ {qu,qIJ}ﬂ{qz] iyt and @f € {giqp O a4 )

e iffor j < j', a; = aj/, then for any i € [i;,4; ] such that a; € {¢,q,} wehave j € {ij, 441, - i},

and similary for the sequences (i) <y, (a);j<p
® ao = giy, ap = q;, and {ap, a3, } = {Grec; Grec}-
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We have a touch if

p
(B8) 56{812]13 Yo + Z Va; (}Tij—l y Tij D (Tij - Tij—l) + Va, (]Tip’ Trec D(S - Tip)
yoeid Jj=1
y
=D oy (U7 Doy = )+ var, (7 Trec) (s — 7 )| < €%/
j=1

As the velocities are bound by n;V, yo is smaller than n Vt.

Remark B.2.1. Note that we can perform the previous construction if Tyec > Ti,. If we study the overlap
for particles of size €, it is always the case. But for punctual particles, the pathology can happen before
the first collision. Our proof can be adapted by taking ig such that ig > i; and ig > i');, making the
change of variable Vi, — Vp, (TZ;) and looking everything backwardly.

Denoting

AVj = Vajq (}Ti]’ y Tiji1 D — Va; (]Tij—l ) T D’ AV; = Va;+1 (]Tl; ’ 7—i;Jrl D N Va; (]7—%71 ’ Ti; [)7
wo = Vg, (T;g) - Vaé(Tit), and w = Vg, (|75, Trec[) — Va!, (]Ti;,,Trch,

the equation (B.8) can be written as

’

P P
(B.9) Sen[a_i?t] Yo — TioWo + z_: AvyTi, — Z Av;-n-; + swg| < 34
yoEZ? Jj=1 Jj=1
We define & C &7 as
(B.10) & = {Vs € [-t,t], i € [L,m], yo € Z*\ {0, |yo — s (vg, (7;) — ng(TiJr))’ > 51/4} .

We want to bound the complement of &5 in &1. As it is a subset of &1, the case yo = 0 is impossible.
The velocities are bounded by V and we only have to test the yo such that |yo| < ¢V. If

[v0 — 5 (vau (77) — vy (1)) | < €%,

the vector (vg, (7;7) — vg/(7;7)) has to leave in a cone € (yo, £1/4) of axes yo and angle 2arcsine!/*/|yo| <
2e'/4 (yo is of length at least 1). Hence

’nk*l

(B.11) Liownle, (1=10) < 3, D0 Ly, () () e et/ )

yoezt =1
[yo| <tV

Now we place our-self in &. There exists a £y such that |Avy,| or [Avy | is smaller than ;:l/:t (in the
following, we suppose that it is |Avy,|). Else, by triangular inequality

P P cl/4
lwy —wo| = E Av; — E Avj| < e
i=1 i=1 "

which gives the following contradiction

2 1/4
ds e R, |yo — (15, — $)wo| < g3/ 4 £

In the following, we denote w; := I%I Equation implies that

’

P P
(B.12) mind (yo - Tio’wo) AWy + ZAVj AN 'UA)fTij — ZAV; AN 'lI]fTZ'; < e3/4.
YoEZ i=1 =1
We distinguish two cases:
o If there exists a £, € N such that |Avy, A | > &/?/ny, T, has to be in an interval of length gl/4,
e Else, we have

’

p p
|w0 /\wf| < Z |AVj /\ﬂA}f‘ + Z ‘AVJ‘ /\’lDfl < gl/2,

j=1 =1



LONG TIME VALIDITY OF THE LINEARIZED LANDAU AND UNCUT-OFF BOLTZMANN EQUATIONS 53

If yo is non zero, |yo A wy| is smaller than 2tVel/2. Hence, there exists a collision j, a vector yo € Z4
with |yo| < ngtV, and a couple of particles (g, ¢’) such that

| (va(757) = vgr (777)) Aol < 2tVe/2

If yo = 0, as we are in &7,

Avy, gl/? 1 1 gl/?
5 P V2 R Adel < = [ 23/ ) <)o
|Av, | S A -0 fwo Aibg| < 0\ A e ) = ° /
Finally
A
(B.13) |AV€°| /\w()’ < el/? 4 el4,
Vi

Note that Avg, is equal one of the (£;(vq,, (7,,) — Vg, (74, ), Veo)i<a, where, denoting
. <

(Y, —% V) = Eal(w/2, —w/2,v)),

S, ,
Gi(w,v) = w, Gw,v) =, (3w, v) == and ¢y(w, v) = 2
2
We conclude that
(B.14) / d7n,, Ltouch
T’!Lk
Ok k-1 g(nk—nk,l_l)_'_ ) 61/4
< n £ /4 + 1 _ B +
B " 21: [Vai () v, (77 ) <12 ‘ti (Tii) — Vg, (Ti )‘

+ Z Z ]]-‘(vq(rj’)—vq/(rj’))/\yo|§2ﬂ/81/2

yoez? ifnlk
lyo|<tniV (g,9")

<el/4>

We have to integrate now with respect to (v}, —1], Vi, ). As in the proof of (6.11]) we use the applications

Z¢. defined by (6.13).
We recall that

4
22T gy o
Celva; (7)) =gt (7))

i,j £=1

Ava; (7)) =vgr (7))

ety () =vgs () wp)]

E%:HE% o E%(V[nk—l]vvnk) = (D[nk—l]vvnk = Vnk (Tj—))
and that the Jacobian of this application is 1. We can integrate with respect to vq (7, ) — v (7, ).

We treat now the last singularity. If we remove the edges (g;, qg) from T, either g; or q} is not in the
connected component of {g;,¢;}. Without loss of generality, we suppose that it is ¢;. We denote w the
connected components of ¢; in 7'\ {(g;, ¢}, s;)}. Before the collision j the particles of w are independent
of the other ones, and as before, we can construct an application of Jacobian 1

=: (V[nk—1]7vnk) = (ﬁ’vwc)(T;_)’Vw(Tj_))'

In addition

|V’nk (7—+)|2 |Vnk (Tj_)|2

|V7lk:|2 = 21 + 2
> Ve ()2 + [va, (7)) + Ivg, (7)) + Vrga 3 (7))
= 2 2 2

Ve (1) gy (757) = v, (7)1 IVengg,3 (7)1
2 * 4 * 2

b
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and denoting w := v, (7;7) — vg, (7; ), We can integrate with respect to the velocities
> / 1 AT (Ve Vinge—1) ME™ dvp,, 1y Vi,
T /o

Colvqs (T )=v 1 (77 )ws)
2(vg; (75 ay (75 Vi /\(vqi(Tfr)—qu(T;r)) <el/4
K2

[€e(vg; (75 )=vgr (7;7),v5)]
J
Ving\ ;317 w?
DTV 7 AN C¥ D S 7]
< 1 (C(1+|Vnk‘ )) e 4 8 d av d
= MA(U v )|<erra ned Vln,—1] [ng] AW
\(z(vaj)l qq q;; — (27-(-)7
< nitkCmeel/4,
Finally we obtain
neg—1

1
B.15 T~ T / ]lreco Vg \Ti) — Vg \Ti)) - Vi dl/i dTiM®nden
(B15) o ; _— 1] (g, (73) = Ve (7)) - .

(nkc)nk k-1 e(nk—nk,1—1)+ 14

. DR )
This conclude the proof. O
B.3. Proof of (3.6).
Lemma B.3. Forn < 2,
(B.16) /11 Zo forma  M®" dZ, < Cyp~ "t
possible cluster
Proof. First choose a family wy, - - - ,w, of subset covering [r], and (),)i<cp = (A}, -+, A¥)ic, a family of

partitions of w;. As n is bounded, there are a finite number of possible ((w;);, (A;):). We construct the
graph ¢ as the merge of the collision graph of Z(7, Z,,., ;) on [0, d], and we extract T the clustering tree
(there are less than (27)%Y possible clusterings trees). We can then adapt the proof of (where we
treated only two pseudotrajectories), and we obtain the expected result. O

B.4. Proof of (8.10). We recall that &, C D" is the set
O = {ZT e D", 3(A1, -, A1), the collision graph of Z,.(-, Z,, (A1, -+ , A1) on [0, 4] is
connected and the pseudotrajectory has a collision or a multiple interaction}.

Proposition B.4. There exists a positive constant C,, depending only on the dimension and the number
of particles n such that

6_‘% Cn n—2_1/ C’rl n—1_1/12
(B17) ]lﬁn (Zn)ind dX27n an < =1 6 et/ < ey 6 3 ,
Tn—1x By, (V) (2m) s (po)m (po)"

where B, (V) is the ball of radius V in dimension rd (we use that § = &'/12).

Proof. For r = 2, we have ”
e~ 72 C62%e"
/Dz Lo,(2) g daa AV = Cet < 5
as 02¢% = g3/12 < ¢,

Fix parameters (A1,--- A1) and denote Z(y,....n;) C D" the set of initial configuration such that the
pseudotrajectory has a connected collision graph and a pathological collision.

As we suppose that the collision graph is connected, we can construct a clustering tree T’ := (g;, G )i<r—1
as in the proof of Proposition We define Tpath the time of the first pathological collision. The corre-
sponding collision can either create a loop in the collision graph or be a clustering multiple interaction.

The first case can be treaten as a recollision, which is already treaten in the proof of Proposition [5.2]
and in the preceding Section, we have

— 5 0_57“—2
/ ﬂ%rico N 67’”1 dXQ,T dV,v S 777“7151/4
Tr-1xB,(v) OV (27)% (19)
In the second case, there are two clustering collisions j < j such that {g;,q;} N {q;, ¢;} and

VT € (75,75), |Xq,(T) —%g,(T)] <e.
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Two particles (g;,q;) can touch on a time interval shorter than (which is integrable).

e
To; (77)—va, ()]

Hence, using the same strategy than in the proof of Proposition [5.2}

— C 51'71
/ Lpmt  ——— dXy, dV, < 0 —g®,
Tr—1x B, (V)

ABL A (2m)% (uo)r—1

Summing on all the possible (A1, -+ A;) we obtain the expected result. O

Proof of (8.10). We have now to prove the Estimation (8.10)):
~ Lotz C,.omin{2r—1}
1 1 e dXy,dV, < ",
possible cluster

Without loss of generality, we suppose that 1 € w.

Fix the family wy,- -+ ,w, of subset covering [n], and ();)i<p = (A, - ,)\éi)igp a family of partition

of w; such that the union of the collision graph associated to parameters ((\/);); is connected.
We begin by fix Z,, and sum the clustering of the particle in [n] \ @
71%&2") _ljﬁwl(zv—«') C 5nf|w|
e 2 e 2 n
1,1 X, dVi < 1o,
s/ﬂ:"_lx(Rd)n Z, form a (Qﬁ)dn/Q (27T)d|w|/2 (‘ua)‘wl

possible cluster

Then we integrate with respect to dX\ 1} dVe. (Il
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