TD 10: TEMPERED DISTRIBUTION

Exercise 1.

- 1. Let $A \subset \mathbb{R}^d$ be a Borel of finite measure. Show that $\mathcal{F}(\mathbb{1}_A)$ belongs to $L^2(\mathbb{R}^d)$ but not to $L^1(\mathbb{R}^d)$.
- 2. Does it exist two functions $f, g \in \mathcal{S}(\mathbb{R})$ such that $f * g = 0$? What happens if in addition f and g have compact supports ?

EXERCISE 2. Prove that the following distributions are tempered and compute their Fourier transform:

1. δ_0 in \mathbb{R}^d , 2. $e^{-\frac{|x|^2}{2\sigma}}$ in R with $\sigma > 0$, 3. 1, 4. H (Heaviside), 5. p. v. $(1/x)$, 6. $|x|$ in R.

Exercise 3.

- 1. If $d \geq 3$, show that $u_0(x) = \left(-\frac{d(d-2)}{\text{Vol}(B(0,1))||x||^{d-2}}\right)^{-1}$ is a fundamental solution for the Laplacian, *i.e.* $\Delta u_0 = \delta_0$ in the sense of distributions.
- 2. Give a solution of $\Delta u = f$ in the sense of distributions for f in $\mathcal{D}'(\mathbb{R}^d)$ with compact support.
- 3. What can you say about the regularity of u if f is a function in $\mathcal{S}(\mathbb{R}^d)$?
- 4. Consider the linear PDE $u \Delta u = f$ for $f \in \mathcal{S}(\mathbb{R}^d)$. Express a solution in $\mathcal{S}(\mathbb{R}^d)$ in terms of the Bessel kernel $B = \mathcal{F}^{-1}((1 + |\xi|^2)^{-1}).$

EXERCISE 4. Let $k > 0$ and $T \in S'(\mathbb{R})$ such that $T^{[4]} + kT \in L^2(\mathbb{R})$. Show that for every $j \in \{0, \cdots, 4\}, T^{[j]} \in L^2(\mathbb{R}).$

EXERCISE 5. We investigate the solutions $T \in \mathcal{S}'(\mathbb{R}^4)$ with support in $\mathbb{R}_+ \times \mathbb{R}^3$ of the wave equation

$$
\partial_{tt}T - \Delta T = \delta_{(t,x)=(0,0)}, \quad (t,x) \in \mathbb{R} \times \mathbb{R}^3.
$$

- 1. Let F be the partial Fourier transform with respect to x and $\tilde{T} = \mathcal{F}T$. Find an ODE of which \tilde{T} is solution. We denote in the following (E) this equation.
- 2. Solve this equation with the ansatz

$$
\tilde{T}(t,\xi) = H(t)U(t,\xi),
$$

where U is solution of the homogenous equation associated with (E) .

3. We denote by $d\sigma_R$ the measure on the sphere of radius R and center 0:

$$
\langle \mathrm{d}\sigma_R, \varphi \rangle = \int_{\mathbb{S}(0,R)} \varphi(x) \,\mathrm{d}\sigma_R(x)
$$

Show that:

$$
\forall \xi \in \mathbb{R}^d, \quad \mathcal{F}\bigg(\frac{\mathrm{d}\sigma_R}{4\pi R^2}\bigg)(\xi) = \frac{\sin(R|\xi|)}{R|\xi|}.
$$

4. Deduce that for $\varphi \in \mathcal{S}(\mathbb{R}^4)$,

$$
\langle T, \varphi \rangle = \int_0^\infty \frac{1}{4\pi t} \int_{\mathbb{S}(0,|t|)} \varphi(t, x) \, d\sigma_t(x) \, dt.
$$

5. What is the support of T ?

EXERCISE 6. We consider the Schrödinger equation on $\mathbb{R}_t \times \mathbb{R}^d$

(1)
$$
\begin{cases} i\partial_t u + \Delta u = 0, \\ u_{t=0} = u_0. \end{cases}
$$

- 1. For $u_0 \in \mathcal{S}(\mathbb{R}^d)$, solve the equation [\(1\)](#page-1-0) in $C^0(\mathbb{R}, \mathcal{S}(\mathbb{R}^d))$.
- 2. Justify that the Fourier transform of the function $e^{it|\xi|^2}$ is well defined.
- 3. Show that for $\alpha\in\mathbb{C}$ with positive real part,

$$
\mathcal{F}^{-1}(e^{\alpha |\xi|^2}) = \frac{1}{(-4\alpha \pi)^{d/2}} e^{\frac{|x|^2}{4\alpha}}.
$$

- 4. Check that also holds in $\mathcal{S}'(\mathbb{R}^d)$ when $\alpha \in i\mathbb{R}$.
- 5. Deduce that there exists a constant $C > 0$ such that for all $t > 0$,

$$
||u(t,\cdot)||_{L^1(\mathbb{R}^d)} \leq \frac{C}{t^{d/2}} ||u_0||_{L^{\infty}(\mathbb{R}^d)}.
$$